Software Development
A Practical Approach!

Hans-Petter Halvorsen

[Planning]

Deployment
[Maintenance]

[Testing] The Software

Development
Lifecycle [Requirements}

(SDLC) AnaIySiS

[Implementation]

[Design]

https://www.halvorsen.blog

https://halvorsen.blog

Software Development

A Practical Approach!

Hans-Petter Halvorsen

- - -
=" b T L Planning J
.-~ Deployment BTN ,

--» Maintenance

Testing ‘
; The Software .
5 Development =
'. . Requirements
' Lifecycle e
(SDLC)

Implementation

https://halvorsen.blog/

Software Development

A Practical Approach!

Hans-Petter Halvorsen

Copyright © 2020
ISBN: 978-82-691106-0-9

Publisher Identifier: 978-82-691106

https://halvorsen.blog

https://halvorsen.blog/

Preface

The main goal with this document:

* Togive you an overview of what software engineering is
* To take you beyond programming to engineering software

What is Software Development? It is a complex process to develop modern and professional
software today. This document tries to give a brief overview of Software Development.

&

S

[ﬁ.) Studio

Requirements Main

system popular

Maintenance. Deployment

Services

Process

Database

I kmn

Control hod

y 2 http:/, /horne hlt no/ hansha
anagement & ‘ g
Implementation ... & dI}?VleW SCIUIII ‘lbinT Stlﬂg Q
iy 1 e[' el’lt stages D P 1 f methods ource
P r O €Ct esign Plarforms _aecod e : A551gnment

SDLC o

\deoma
Language
[) £
project

App 1 Lmks Microsoft

Development =z

Modelling

UML

TOpiC @ Schturvd

process 2

Mobile

ectul

=]
E

Arcl'u

dingra ERwin : Tutorial
development Craing f‘v%,im o T

systems Fing] Deskiop &

ASP NET t Languages

S"“““Server Code

Meetings Online

V)]
g
=
we \1sual §
|
o))
@)
Y

Documentation
Crea

Engineering

P

This document tries to focus on a practical approach regarding Software Development.
So why do we need System Engineering? Here are some key factors:

e Understand Customer Requirements
o What does the customer needs (because they may not know it!)
o Transform Customer requirements into working software
e Planning
o How do we reach our goals?
o Will we finish within deadline?
o Resources
o What can go wrong?
e Implementation
o What kind of platforms and architecture should be used?
o Split your work into manageable pieces

e Quality and Performance
o Make sure the software fulfills the customers’ needs

We will learn how to build good (i.e. high quality) software, which includes:

° Requirements Specification

e Technical Design

e Good User Experience (UX)

e Improved Code Quality and Implementation
e Testing

e System Documentation

° User Documentation

U etc.

You will find additional resources on this web page:

http://www.halvorsen.blog/documents/programming/software engineering/

Information about the author:

Hans-Petter Halvorsen

The author currently works at the University of South-Eastern Norway. The author has been
working with Software Engineering for more than 20 years.

For more information, visit my web site:

https://halvorsen.blog

https://halvorsen.blog/

Table of Contents

PrETACE i iii

Part 1 : INtroduCtioncc.eeeeeiiiiiieeee e 18

1 INErOdUCTION i 19
00 A - 7= Yol €= o TV o Vo USRS 23
A o o] [of T PP POPRPRPPRRPRt 24
IR T e Yo | £ 26

2 SOftWAre HiStOIY .uuueieeeeiiiiieeeeeceee e 30
2.1 INErOUCTION ceeiiiiii e e e e e e e 30
2.2 SOTEWArE TrENAS. ..ottt e e e e e s e e e e e e es 32

3 Software DevelopmeNntuuviiieeeeiieeeeeeeceee e 34
0 R O =11 =T oY o T PP 35
3.2 SOTEWAIrE SYSTEMS. ... e e e e e e 35
3.3 DOCUMENTATION ..eiiee e 37
3.4 1terations and RelEASEScoeeeiieic e 38

Part 2 : Software ENINEEriNGuuuuuuuueuueiiiieii e 40

4 Development TEAMS .couviee i 41
L R =T o ¢ E S TP RPPRR 42
B.2 ROIES .t e e e e as 42
B.2.1 StAKENOIAETS c.ceueeeecieeiceeete ettt 43
8.2.2 PrOJECE MANAGET c..ccouieeeeucereeeaseessetseeseses st ssesss s se e ss e ssess et sttt nsees 43

e TV =T o 10 AN el] =T o R 43

viii

A U) Qb 1T T oY= TR 43
o T S (o T={ - [4010 0 1= (P PRSP TRPPR 43
A.2.6 SOFEWAIE TESTEN .vviiitie ettt ettt ettt eette e et e e te e et e e e stbeeebeeeeabeeeareesaseeessbesesareesnnreens 43
5 Software Development Phasesccovevvveiiiiiiiieeeieeeeeeeeecn, 45
o0 R (=T 10 1 =T 0 g V=Y o PPN 46
T A D 11 1= o LR PPN 47
o300 R = Tol o [oY ot | I D 1T Fq o SRR 48
oI A U) B T 7= ISR 48
5.3 IMpPlementation ... 48
T S =1 | o ¥~ SOOI 49
5.5 DEPIOYMENT . 49
6 Software Development ProCess......cccccvveeeeiieveviiieiereiieeeeeeeeveee, 50
6.1 Plan-driven MOEIS ... 52
6.1.1 Waterfall MOAEl....ccee et e s re e eaeen 52
B.1.2 VomMOGEL ettt s e e naneea 53
6.2 Agile Software DevelopmeENtcoooeeviviiiiiiiiee e 54
6.2.1 Waterfall VS. AGIIE ..eooeeiieeece et see e 58
6.2.2 eXtreme Programming (XP) ..ottt ere ettt e e sare e ebaeeears 59
S Vol (U o o PP PTRRPPPRI 61
I S € [o] o Y- o HE RS RRRTRRRRR 63
6.3 Hybrid Process MOdelSs...........uieiiiiiiiiiiiieiiiiee e e e eeaaaa 64
6.3.1 Unified Process (UP)/ Rational Unified Process (RUP)ccccveeeevuieiurenreeiiecireecree s 64
B.4 SUMIMIAIY .. ittt e et et e e et eeta e eeaa e e een e eena e ennneeennneeenns 65
T o =T of 1 <L U UPPPRPPPPPIN 65

72 Yol [o o [T 67

2% N B T BN Yol 0 g T o o Yo =TT 67
7.2 SCrUM EVENTS ..ottt e e 68

2 R O - 11 1Y Yol AW 1Y/ =T =Y o g R 69
7.3 SCIUM ANt aCtS. e 70
7.4 The SCrUM TAM .. e e e e e s e as 70
7.5 SCrUM MEETINES ..uieitii e e et e e et e e et e e et e e eaaeeeeaaaeeenn 71
7.6 SCIUM TOIMIS .ttt ettt e et e e et ta e e e e e tba e e e e eaaaaeeeeennnans 72
7.7 TIPS AN THICKS..euueiii e e e e e e e e e e e 74

8 Project Management... ... 75

S 0 M o] o T[Tl od 1= oY 11 o = RPN 76
8.2 KiCK-Off/BrainStOrmMiNg .. .cceeeeeeeeeeeeeeeeeeeeeeeeeeee e e e e e e e 76
8.3 Software Development Plan (SDP)uuuiieeeeeiiieeeeeiceeee et 78

S 70 A C -1 Y f O o = OSSOSO SUPRTSR 79
S S \V/ 1= 1=] o F £ PPN 80

St R |V oYY [g Yo Y ==Y o Y = SR 81

8.4.2 IMINULES OF IMBETING ... cteee ettt ettt ertr e e e tre e e s e br e e e e sabr e e e e eaareeesensraeeesnnsraeens 81
8.5 Agile Project Planning and Trackingccevvvviiiiiiiieiiiiee e, 82
BB SUMIMIAIY ettt e e e et e e et e et e et e e eaaaaan 84

9 Requirements ENgINEEIiNGccccveeiiiiiiiiiiiiiiceiiie e 86

9.1 User ReQUIrEMENTS ...cevuieiiiiiiiee ettt e e e e eeeeaas 88
9.2 System ReqUIremMENTScoi i e e e 88
9.3 FuNCtional REQUIrEMENTS e e e e e 88
9.4 Non-Functional REQUIrEMENTScuuuieiiiiiiiiee e e e v e e eaaaes 89
T T £ TP 89

9.6 Project EStimation ... e 92
0.7 EXEICISES ettt e et e et b e e e b eeeeaas 92
10 User eXperienNCe(UX) .o et e e e e e eeeenens 94
10.1 UX GUIEIINES...ciiiiiiiiiiiiiiiiiiiiieeieeteieeeee ettt ee e seeeeeeeseeeeeeeees 95
0 A C1 U 1Y/ o Yol (U o PSP 96
10.3 Crealivity coeeee e e e e e e 97
11 UML e r e e e e e e ee 98
1 0 R [1 o Yo [0 ot f [] o PP PPPP PP PPPPPPPPPPPPP 98
A U 11V Y o) i Y | RPN 99
11.2.1 VisUQl STUAIO ENtEIPIISE ccuuriieieiiriee ettt ecttee e eecttee e eettree e e etreeeeestbreeeeearaeeesssbaeeesnareeeenanns 99
11.3 USE CASE ittt e e e e et e e e eaa s 100
11.4 SequenCe DIagram ... e aaas 101
o T O F- T DI = - [o o F R 102
11.6 Creating UML DI@grams .. .ccuuiiiiie ettt e et e e e e e e e eaaaas 102
11.7 UMLIN AGIlE/SCrUM? ..ot e e 103
I YU 0 o 0 1 1= 1 PSR PPPPR 104
11,9 EXEICISES ettt ettt ettt e et e e e et e e e e eba e e e e eeaaan s 104
12 Software Implementation.......ccccccveeeeeeiiiiiiiieiiiccceeee e 106
12.1 Programming Style & Coding GUIdeliNeS..........uuvvrvrririreirriirininiiininiinnninnn. 107
12.1.1 NamMIiNG CONVENTION ...uiiiiiitiie ettt ettt e st e s et e e e st e e e s eneeee s 108
12.2 COMMEBNTES et e et e e e e 108
2 T B 1T o 0T 4= T T~ SO 111
12,4 COOE REVIEW ..ttt ettt eeeeeeeeeeeeeeees 112

A T (= - Tor {01 1V = O UUUPPRPURN 114

Xi

13 TESHING e e 116
S 70 R 1 o Yo [0 ot o o H PO PP P PP PP PPPPPPPPPPPPPPPPN 116
13,11 TeSt LEVEIS .o 121
G T A U - I = Yol TSR 122
13.1.3 SOftWAre VEISIONING ...oeeieiieciie ettt tee st e e et e e ent e e sne e e sateeeeneeesnnneeeanes 122
S 0 A = Ty a0 | (=Y (o] =P 125
G T R 1 - Tl 1 o Yot =TSy T =R 125
G B A VIV YL o o Yo N I =1 o [o= RS US 126
133 TeSELEVEIS coeeieiiiiiiiiiiiiiiiieeeeeeeeeeeeee e 126
G 20 T A U 1o T o I T o [V= OO PRSPPI 128
13.3.2 REEIESSION TESTING ...uuvriiiiieeeeieeciittiee e e e e eeeectree e e e e e e e e e crbreeeeeeeeeeerasarasseeeeeeennnssssaseeaaaeean 130
13.3.3 INTEGratioN TeSTING couueiiiiiiii it e e e e e e s s st r e e e e e s s sssabbaaaeeeeeeeean 131
13.3.4 System Testing/Validation TESTINGcccueveeieiieiereeeeceee e 131
13.3.5 ACCEPLANCE TOSTING .uuuiiiiiiiiiiiiieiittee et e e e e s e s st e e e e e e s s s ssabbaaaaeeeeaeeas 131
13.4 Test DOcUmMENTAtioNooeeiiiiiiiiiie e 132
G B 11T o] =Y] 11 oYU 133
13.5 Bug Tracking SyStemS.......cooiiiiiiiiiiei e 134
13.6 TeSt ENVIFONMENT......oiiiiiiiiiiiiiie e 135
N S RV T AU | 112 d o [P RSPRR 137
13.7 Terms used iN TeSTING ..uuueii i 139
13.7.1 BUES cteeeteteteiente ettt ettt ettt et b bbb bbb b b h e R R e s bRt R bR bt n e nennenne e 139
G TR 0 A B 1Y o T == o V- S 139
T T 0o T [@01Vt T - RSP SR 140
13.7.4 Eat your oWn DOZ fOOMoooiiiiiiecee e et et 140
13.7.5 COUO/FEATUIE FrOOZE .o ieeiieeeee ettt ettt e ettt eat e ettt eeat e s e taessteesatbessasessateesannessanes 141

13.7.6 Test-Driven Development (TDD) ...ccceeccreeecieeiereeecieeeeetreeereeeereeeenreeeneeesareeesnresensneesnnes 141

xii

13.7.7 Development-Driven TeStING (DDT) .ueccueieceriirieeereeeereeeereeeereeeerreeeereeesteeeenresesseeeeanes 141
13.8 The 7 Principles of TeStING ...ccuucviiiiiiiiie e 142
13,9 Testing SUMMAIY coouiiii et e e e aaas 143
13,10 EXEICISES eeniiieiiiie ettt ettt e et e e e et b e e e e eana s 143

14 Deployment and Installationccccccooiiiiiiiiiccc 145
2 50 R 1 o Yo [0 ot T] o OO PP P PPPPPPPPPPPPPPPP 145
142 RElEASES ...eeeiiiiiiiiiiiiiiiiiieee ettt bttt bbb bbbt bbbttt bb bbb brn b bbb rrnnnes 145
14.3 DePloymMENt ... e e e e aaa e 147
14.4 Test and Production ENVIironmMeNtceevvvviviiiiiiiieiieieireeeeeeeeeeeeeeeeeeen. 148

14.4.1 Development ENVIFONMENT ..oc.eiiiiiiiiieee ettt st s eae s 150

14.4.2 Production ENVIFONMENT...cccciiiiiieetie ettt ettt e st e e st e s snteeenaeeenns 150

14.4.3 TeSt ENVIFONMENT (.ot e s s 150

15 Project Documentation......ccccoeveviiiiiiiiii e, 151
15.1 Process DOcUmMENtatioNceuvuuiiiiieiei et 154
15.2 Product DOCUMENTATION.....uuuuiiiiiiriiiiiiiteiirereeieureeeeeeaeeeeeeererrrerrnerrrennaraaan. 155

15.2.1 System DOCUMENTATION coiiiiiiieiieeeee e e e e e e e e re e e e e e e e e e nnrraeeeeeeeean 155

15.2.2 User DOCUMENTATION ..eeiiiiiiie et e e s 157
15.3 Setup & DistribUtionoiiiiiiiiie e 159

16 Software MaintenanCecccvveeeiiriiiiieeeeniiree e 160
70 R ' 1 o Yo [0 ot T o PP 160
16.2 CatOBOMIOS ittt e et e e e 160
Part 3 : Platforms & Architecture.......ccccuvivieeeiiiiiiiiiciiceceeee e 163
17 Software Platforms ... 164

17,0 TN rOAUCTION ettt et e e e e e e e e e ae e e eaeaneeneeneenseneeneenaenaannes 164

Xiii

i A S - o] o o d Y L= g Vo (o T RNt 165
7. T B =T 1 o o J 166
17.3. 1 WINAOWS ittt st e sse e st b e s st et e e beesaeesaseeseesaneenneenneesanesanean 166
17.3.2 MACOS e s e e s nrae e s 168
0 T T KT 11) O ST UPTOPRPPPOPPP 170
174 WED ettt bbbttt t bbbttt ittt b rbrrtbbbabaa 172
L1741 WED SEIVEIS ..ttt sttt st st be e s an e e b e aeesaneeaneas 174
17.4.2 WED FrameEWOIKScovuiiiiiiieeitiesie ettt sttt sbe e saesaeesaaesaaeeneenseesnteeaeas 174
17.8.3 ASP.NET COP@.uvururieerreeiieessseessssesessessssssessessssesssssssssessssssessssessssessssesssssssssessssessnsessssessnes 175
17.4.4 Web SCripting LANGUAEZES ...vvveeeeireeeeecieeeeeeitteeeeeeteeeeesitteeeessseeeesssssseeessssseseessssasessssseseens 176
S T 1Y/ (o] o Y| [L2V ol PRt 177
17.5.1 HOS ettt ettt bttt 179
R T A X o o [o 1 1o RSP 180
17.5.3 WINAOWS L0 c.ueiiiiiiiiiiieeie ettt sttt sttt et ettt sat e s beesbe e satessbeesbaesaseebeenaeesatesnnean 184
72 R @1 [o 10 Lo I @0 o o 1V 4 [V=R 185
i A O T o 1= BV o 1 U | fof TP PPPR 186
18 Software Frameworks & LangUagesoeevvvvverieeeeeeeeeereennnnnns 187
18.1 Object-Oriented Programming (OOP)cuvvvvvvrrrrrreeeeeereeeerenreenneennnnnnnnn. 187
18.2 Popular Programming Languages[s}}] .. 188
0 O OO P O T U UTRTOPTUTOPPP 189
18.2.2 Gttt ettt e et e e e e e b et e e e e b et e e e e bte e e e e abtee e e aabaeeeeenraeeeenraeeens 190
R T € - S PP PPPPPROPRP 190
L18.2.4 JAVA ittt e et e e st e e e e bt e e e s e bae e e e abae e e e e ntaeesearaaee s 191
S T © 1 o[Tox 4 1Y T U 191

L8.2.6 VISUAI BASIC ettt ettt e e et et e et e e e e e e e e e eeeeeseeeeeeeeeeeeeeeeeeeeseeeeeeeeseeeeseeeeeeeseeeeeeess 192

Xiv

L8.2.7 POII et seeees ettt a et a e st be e aeesareene s 192
T S SV o Yo o TSRS 193
18.2.9 PHP oottt bbbt 194
1R 200 K O B - 1 V7 N o | o) PP PPPPPPO 194
e I © | O O UPPUP PRSPPI 195
18.2.12 IMATLAB ettt et e e s e e e e s e e s e e e e e s nraeeeas 195
18.2.13 LADVIEW ittt st sttt st et st et sbe e st st e e be e st e e be e bt e sateennean 196
18.3 Naming CoNVENTION .ouuiiiiiiii et e e e e 197
18.4 Defensive Programming.........ccieeiieeeeiiiiiiiiieee e e eeeeeeevtiee e e e e e e e e eaananaaaes 199
R R Y o o Tl = =Y e | 1T Y= 199
18.5 SOftware FrameWOrKSuuuuiiiiiiiiiiiiiiiiiiiiiriiiiieererarereenererrer———.. 201
18.5.1 INET FramEWOIK ..ccueeiieeiecieeiiesie ettt ettt e e te e aa e st e e aeensaeenseenneas 201
18.5.2 WPF oottt bbbttt bbbt 201

19 Software ArchiteCture.....cccccovvviiiiiiiiiii e 204
L9.1 AP ittt ettt ——— b bt b — bbbttt bbb tbtbbbbnnrnrnnnnnnnnes 206
RS T A O 1= o} Y =T V=T PP 208
19.3 WED SEIVICES covviiiiiiiiiiiiiiiiieieeeeeeee ettt ereeeeeeeeeeeees 209
19.3.1 SOAP WED SEIVICESeeeuieiiiieiieeiie ettt sttt st sae e st s e e b e s e saneeneas 212
19.3.2 REST WED SEIVICES ..eoeiiiieiiiiiiesie ettt ettt e sae e s s e st e e beenaeesnreeaeas 213
19.3.3 Creating Web Services with Visual StUIOccccuerriieriiniieiececeeecceeeee e 213
19.4 3-tier ArChiteCTUIE ..uuviiiiiiiiiiiieeeeeeeeeeeeee e ebeererrearraaee 217

Part 4 : Management and Development Tools.........cccccceeeeeeiiinnnnnnns 222

20 Project Management Systemccooovviiiiiiiiiiiieee e, 223
20.1 Features and FUNCLIONAlitY......ccevviiiiiiiiieeeeecee e 224

20.1.1 Project Dashboard.........ouoiiii ettt e e e e e e e earaee s 224

XV

20.1.2 TASKDOAId ..ot st 225
20.1.3 RiSK AN@IYSIS .eiuiiiiiiitieiie ettt ettt s et e s e e s e e be e teesaae e b e e aeessaeenbeessaeenteeaeenaes 226
20.1.4 BUES aNd ISSUE TraCKiNGeecveeiieeieesiiesieecieeseeete e se e e e et e e e e beesaaessaeeaeessaesnaeeaeenens 227
20.1.5 MEBELINES 1ottt e e e s st e e e e e e s sttt a e e e e e e e st btaa e e e e e e e e e abrtaaaeeeeeaan 228
20.1.6 ProJeCT STatUS . uuiiiiiiiiiiciiiiiie et e e e e s st e e e e e e s s st ta e e e e e e e e s s aabraaeeaeeeean 230
20.1.7 NOUIFICAtIONS cneeiieiieeee ettt s s st s n e e bee e 231
20.1.8 NS -ttt ettt e e et e e e bt e e e e et e e s e e et e e s e et e e e e nbeee e eanneeeean 232
21 Integrated Development Environment (IDE)..........cccccvvvvneeenen. 235
211 ViSUQLI STUAIO e 235
P2 B VAT UF | IR dUTe [To TR (o) gl 1= Yol ST 236
P2 S TR VAT UF- |) 8T [o T 0o o [T 236
2 T S (ol o o 236
B T S Yol 11 1Y 237
21.6 ANAroid STUAIO ... 238
22 UMLSOftWAre oo, 240
0 R V1] T T PPN 240
22.2 SEATUML. e s 241
23 Source Code Control (SCC)....cceeveveiiiiiiiiiiiii 242
23,1 INErOAUCTION e 242
23.2 AZUIE DEVOPS ettt e e eea e 244
25 705 T VT 244
2304 VS e e e e e e e eas 245
B2 78 T 1 TR 245
2306 OtherS e e e e e 245

XVi

23.7 Cloud-based SCC HOStING SErvicesccooevvvviiiiiiii, 245
23.7.1 AZUIE DEVOPS SEIVICES..ciiiuiiieiieiiiee ettt ettt e e eitte e s sttt e e s s et e e s ssabteesssasteeessssaeesennaeeess 246
23.7.2 GITHUD oot 246
23.7.3 BItBUCKET ..ot e e 246

24 Bug Tracking SYSTEMS.....coeviiiiiieeee e 247
25 AZUIE DEVOPS ..ttt e 248

25.1 Source Code CoNtrol (SCC) ..cceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 249

25.2 Areas and [terationS.......cccueeieiiiiiiiiee e 250

25.3 WOTK IEEBMS ..o 251
25.3.1 QUEKIES ettt e e e s e s b e s na e e sreeean 252

25.4 Taskboard ... e 253

25.5 AzZUIre DeVOPS SEIVICES...ccvuuuieieiiiiie ettt ettt e ettt e e e eteaa e e e eeeae e e e eenenas 253

25.6 ClENT TOOIS ..oiiiiieiiiieee et e e e 256
DT ST R =T T o T o] [o Y R SR 256
25.6.2 MS EXCOI AN ..ottt s e 258
25.6.3 MS ProjeCt AG-iN ..oooieiieeie ettt ettt e et e e et e e e re e e rae e enaeeens 258
25.6.4 Windows EXplorer INTEZIrationccueeiiieieiiie ettt et e e nne e 258
25.6.5 Azure DeVOPS MSSCCI PrOVIAEL ...ueeiccireeeeciiieeeeitee e e eeiree e eeitreeeesrbreeeessaeeeessnbaeeesnnnaeee s 259
25.6.6 Team EXPlOrer EVEIYWREI ... ettt e e etre e e e e abae e e s abaeee s 260

25.7 Agile (Scrum) Development in Azure DeVOPSvveceeeeeeeeeeeeeeeriiiieeeennn. 261
25.7.1 Product Backlog I1tems in AZUre DEVOPS.....cccueecveerieerieeiieeieesteesreesieesaeenseesaeesaeenaeesaes 262
25.7.2 Sprint Backlog 1tems in AZUre DEVOPS......cccvuveeiieeeiieectee e ste e eee et sveeesrae e esnaee s 262
25.7.3 Taskboard ..o 265

25.8 Software Testing in AZUre DEVOPSccvvvueeeeeeiiiiieeeeeiiiieeeeeerieeeeeeanaeeeeeenns 266

25.8.1 Test Planning in AZUre DEVOPS......eeicciuieeeeciiieeeeitie e e eeitteeeeeiateeeesssseeeessnsaaeessnnsaeessnnsneeens 267

XVii

26 Databasescciiiiiiiiiiii e 269
P TN A O | B Y= o V< PP PP 269
P A = D 1T T < - IO 270
26.2.1 IMIS VISIOutttitiieiiie ettt ettt ettt ettt et et e st e s st e s e e e et e e s ne e e s b e e e s re e e e re e e nreenneeean 271
26.2.2 ERWIN ettt e et e e s et e e s e e et e e e e na e e e e e nbe e e e eaaeeee s 272
26.3 Structured QUEry LaNgUAEEccevuuiiiieeiiie ettt e et eeeaa e e e eeaaes 273
26.3.1 BeSt PracCliCe ...coocuiiiiiiiiiiiiiiiciicci e 274

B A U 1 o1} o =1 4] ¥ = RPN 275
27.1 Unit Tests FramewWorksoooviiiiiiiiiieieee e 275
27.2 Unit Testing in Visual STUIOoeiiiiiiiiiiieecce e 275
D A T O Yo [01V - V= P 278
274 EXEICISES coiiiiiiiiiiiiii ittt 279

28 Deployment in Visual Studio.....cccoeeeeiiiiiiiiiiiieeeeeeee, 280
28.1 Setup Creation SOftWare.....cccoeee i i 281
28.2 VisUAl StUAIO . 281
28.2.1 InstallShield Limited Edition ..ot 282
28.2.2 WX TOOISEL ...ttt e s 283

Part 5 : Additional RESOUICEScoevvviiiiiiiiiiiieeeee e 285

29 TULOMIAIS ittt 286

30 GlOSSAMNY coeeee e, 287

RO O N CES ettt et e e e e e e e e e e e e e e e e e aaans 290

Part 1 : Introduction

In this part, we discuss what software development is with some examples. We also give a brief
overview of the software history.

1Introduction

What is Software Development? It is a complex process to develop modern and professional
software today. This document tries to give a brief overview of Software Development. Normally
we use the terms System Engineering or Software Engineering.

System Engineering: The process of analyzing and designing an entire system, including the
hardware and the software.

Software Engineering: The discipline for creating software applications. A systematic approach to
the design, development, testing, and maintenance of software.

A lot of systems today have a mix of hardware and software that is tightly integrated, like modern
smartphones, tablets, etc. To create such systems, involve a lot of different disciplines.

Software is any set of machine-readable instructions that directs a computer's processor to
perform specific operations. The term is used to contrast with computer hardware, the physical
objects (processor and related devices) that carry out the instructions. Computer hardware and
software require each other, and neither can be realistically used without the other, see Figure
1-1.

Software
~ -

Hardware

Figure 1-1: Hardware and Software working together

20

1 Introduction

In Figure 1-2 we see a typical network and infrastructure that the software relies on.

—

Windows Server 2008/2012

Clients

.........

v

Y)

Figure 1-2: Typical N

Figure 1-3 we see the complexity
involved.

Network/Soft

Server

OPC
Server

Web
Server w
Router

Database
Server

Network &
nfrastructure

T

SQL Server

=

etwork and Infrastructure in Software Development

of software development and different components that are

[Presentation Layer J

ware Architecture

()
Client/Server Architecture 3 Layer Architecture SOA Architecture E [e e v J
\ - 5 3 |
Z . < | |
’ é i 5 [Data Access Layer]
Mac 0S X U £)‘ ' =>4 t i
= s - = - o | 3
== \Windows 8 5 Virtualization! 2 3
I VMware HyperV ; Data
| Source
I 1 valgg‘seﬁgg POI"t 8080 LT " 58
L7 Windows Azure HTTP &
Clients o — ASPnet @D
£y
RDC/TeamViewer Network Server 'ﬁé“
Hardware + Softwar N Apache
Internet, Ethernet, TCP/IP, HTTP, VPN, Port 1433 \ﬁ
OPSCOE:: :reeller Routers, Switches, Computers, Protocols, Stred Procediies) SO Server m
OSlI, XML, SOAP, etc. MysQl
RDC/TeamViewer Database jl\AorioDB
OPC a0
Server
== Windows Server 2012 .5 W ORACLE"

Figure 1-3: The Complexity of modern Software

Part 1: Introduction

21 1 Introduction

In Figure 1-4 we see the different phases involved in the Software Development Lifecycle (SDLC).

- -
e pL TN [Planning J
.-~ Deployment
. _.----7 Maintenance -~.. .
/ “\A A"

I
I
]
I
I
I
I
I
I
]
I
I
I
v |
I
I
I
Y

Testing ‘ \
; The Software \
i Development -
'. if | Requirements
Li ecycle Analysis
\ (SDLC) y
Implementation !
\\\ /}‘II
AN o
" Design .’

Figure 1-4: The Software Development Lifecycle
The main parts or phases in the software development process are:

* Planning

* Requirements Analysis

* Design

* Implementation

* Testing

* Deployment and Maintenance

In Figure 1-5 we see examples of some of the different activities involved in the different phases of
software development.

Part 1: Introduction

22 1 Introduction

Functionality Requirements
Initial User Interface

Planning Technology Platform Selection
) Technical Architecture
_ Support Requirements project Plan
Installation Application Architecure
/./’/ : \"\@etailed Specifications
/.'fl \‘.\
. \ System Interface
Maintenance ; . D‘Lsign
t. Design |
!.‘ /.1-'
Deployment \ /:inalize User Interface
Acceptance v i Test Plans
f Application Code Development
SystemTesting| Testing | - ' Implementation
\ \ / System Interface Development
\\ / \ /
~ \\ 7/ Unit Testing

Integration Testing RegressionTesting]] o
Integration with existing Apps

Figure 1-5: Activities involved in the different Software Phases

As you see, software development involves lot of phases the are executed by different disciplines
and different people. We will discuss and explain all these things later in this document.

Why Do Reviews?

Cost per defects

SDLC (Software Development Lifecycle) >
‘c-, _— — \.\‘\ Z (\) - i
e(\ = \ . N g %) ‘\\,
e " 2ol e ae P <€
o\ eSte— g e’ o
?\30\ %\ Q\e/ o < GQ\

& \ -~ >

\‘\//, U

Figure 1-6: Have Reviews at all levels in the Development Cycle

Part 1: Introduction

23 1 Introduction

1.1 Background

Software and software systems are getting more and more complex, so it is important to have the
necessary “tools” in your “toolbox” to be able to create and maintain your software.

Software Development is a complex process, and it may involve a lot of money and a lot of people.
Here are some examples:

* Windows 7: A Team with 1000 Developers created Windows 7
* Number of Code Lines: Real systems may have millions of code lines
* Big money: 100+ million Development Projects

* Combination of Hardware and Software: Most of the projects involves both hardware and
software and integration between them.

* iPhone 1: Development period 2004-2007, 1000 Apple employees worked with the device,
Estimated cost: $150 mill.

All this needs structure! - Software Engineering is the Answer!

Q = “\“SS%
s ““SSB

P A0y

ratist®’

) o . 13 %
p- o 10
{ AWM
G add® :
\ \ L 8 - L gTTER Q
L 5 cTER
[(\".)\rl"' AU LEY
2 ALLENE O
ot VTAL
fNN

o : . =
\u‘x “;:\:“‘ 1428 . ¢ /
SSBs nye nettsider ble i dag sjesatt. Det er over tre ar etter planen, og med budsjettsprekk i 100 millioner kroners-klassen.
Plattformen er basert pa friprog-publiseringsi@sningen Enonic CMS.

Dette kostet 125 millioner

Nye SSB.no lansert. Sjekk resultatet.

Marius Jergenrud

Nye nettsider for Statistisk sentralbyra (SSB) skulle koste 12 millioner kroner. Neer 100
millioner kroner var svidd av da digi.no avslerte skandalen i fjor sommer.

Prosjektet ble pabegynt allerede varen 2007. Fem ar senere kunne ingen svare pa nar
nettlasningen ville sta ferdig.

Prislappen har n rundet 125 millioner kroner. Fredag ble nye SSB.no omsider lansert.

Part 1: Introduction

24

1 Introduction

1889

1893 1897

ayod g yaab

7
/

/

Thank god not everything is software

Project Planning and Management is important in Software Development and we can use different

approaches to deal with the Software Development, which we will cover in this document.

Especially so-called Agile approaches, such as Scrum has become very popular today.

1.2 Topics

Below we list the different topics covered in this document. The Software Development Life Cycle,

shorted SDLC, involves distinct phases, such as:

e Market research

e Gathering requirements for the proposed business solution
e Analyzing the problem
e Create a plan or design for the software-based solution

e Implementation (coding) of the software

e Documentation in different ways

e Testing the software

e Deployment and Installation

e Maintenance and bug fixing

e Marketing

See also Figure 1-7 for topics involved in software development.

There are different approaches (Software Development Processes) that deal with these phases,

such as:

Part 1: Introduction

25 1 Introduction

e Waterfall model

e V-model

e Agile Software Development (such as Scrum, XP, etc.)
e Spiral model

e Rational Unified Process (RUP)

e etc.

We will learn more about these development processes later in this document.

Software Engineering

;)
Development

Processes

Design — —
\ /,/ Ve Quality \,‘ Architecture

\ Control /'

~— -

Figure 1-7: Different Topics involved in Software Development

Software Development also involves separate roles, which are organized in different teams (Figure
1-8). Typical roles are:

e Project Manager

e System Architect

e UX Designer

e Programmer, System Developer
e Tester

e Customer

It is crucial that the separate roles and teams can work together and collaborate.

The Programmer or System Engineer must deal with that there exists hundreds of different
Programming Languages. Each language has pros and cons, so it is important to find out which
programming language is best suited in each situation.

Part 1: Introduction

26 1 Introduction

¥ Collaboration!
e’ -

Software Architect Sofiware Tastor

Project Manager

UX Designer Programmer

Figure 1-8: Distinct Roles involved in Software Development
In this document, we will learn how to build good (i.e. high quality) software, which includes:

e Requirements Specification

e Technical Design

e User Experience (UX)

e Improved Code Quality and Implementation
e Testing

e System Documentation

e User Documentation

e etc.

1.3 Tools

To create great software, as a software engineer you need a toolbox with proper tools, otherwise
you will not succeed in your job (see Figure 1-9).

Part 1: Introduction

27 1 Introduction

Your Toolbox

* PC

* Programming Language

* IDE (Integrated Development
Environment)

* Frameworks

* SCC Tool (Source Code Control)

* ALM Tool (Application Lifecycle
Management)

 Knowledge about Software
Engineering

You cannot do a good job as a software developer without some proper tools!

Figure 1-9: The Toolbox of a Software Engineer

When working with software development it is important to have good tools. The developer needs
of course to use a programming language and proper IDE (Integrated Development Environment).
In addition, a so-called ALM Tool should be used. ALM is short for Application Lifecycle
Management. An ALM tool typically facilitate and integrate things like:

e Requirements Management
e Architecture

e Coding
e Source Code Control (SCC)
e Testing

e Bug Tracking
e Release Management
e etc.

There exist a lot of such tools, e.g. Azure DevOps, lira, etc.

We will take a closer look at Azure DevOps (or the online version of Azure DevOps: Azure DevOps
Services) in this document. Azure DevOps from Microsoft, since it is tightly integrated with Visual
Studio.

Typically, you need to share the code with other developers or testers in your team or other
teams, so it is crucial that you have tools that can be used to share your code, that makes sure that

Part 1: Introduction

28 1 Introduction

old versions of your code will be stored, and can be restored, etc. Such a system is called a Source
Code Control (SCC) system.

Your software will also contain a lot of bugs that needs to be found, tracked and fixed, etc. To
handle that we need a so-called Bug Tracking system.

In Figure 1-10 we see some of the bug tracking functionality in Azure DevOps.

New Bug 1*: WS is not working
[¥] X Copy template URL
Tags Add...

WS is not working

STATUS CLASSIFICATION PLANNING

Assigned To * Area Development Project 1\Deskiop * Stack Rank

State Active « Tteration Development Project 1\Beta * Priority 2 b
Reason New - Severity 3 - Medium -
REPRO STEPS SYSTEM INFO EST CASES HISTORY ALLLINKS ATTACHMENTS

DISCUSSION ONLY ALL CHANGES
[Mo entries with comments]

Figure 1-10: Bug Tracking System

In Figure 1-11 we see a typical software project with different platforms and frameworks involved.

Part 1: Introduction

29 1 Introduction

oL S —) T m{ ;m
DC Visual Studio 5& LabVIEW ? o mp-n-et U Tablet or Smartphone
Web Browser
- Visual Studio/C# - ASP.NET

- WinForm/WPF - PHP

Client #3
- LabVIEW - JavaScript, HTML I

i
== Windows 8 |
i

- i0S (Xcode, Objective-C)
- - Android (Eclipse, Java)
Presentation Layelw yrTp - Windows 8 (Visual Studio/C#)

Client #1

Client #2

Web Services or OPC

; @ Internet
| | == Server-side Logic Information
Services (lIS)
Flayer - or Apache

Architechture T T e
Business Layer (Logic)
\E" SQL Server (or MySQL,
Weather SOL server SQLite, Oracle)
Station B Windows Server 2012
: Server

Figure 1-11: Typical Software Project with different Platforms and Frameworks involved

Typically, your software needs to be installed and be running on different devices, such as PCs,
tablets, smartphones, etc. You also need to store the data, typically in a database, such as
Microsoft SQL Server, MySQL, etc.

All these devices and the data also need to communicate with each other over a network, either
an internal network (LAN, Local Area Network) or over Internet (WAN, Wide Area Network).

All these things make it very complicated to develop, test, deploy and install such systems. That’s
the reality for a modern software developer.

Part 1: Introduction

2 Software History

2.1 Introduction

The computer and software history goes back to the beginning of the 1900 century. IBM was
established in 1911, Hewlet Packard (HP) was established in 1939, the transistor came in 1947, the
first Microprocessor came in 1972, etc. But “personal computing” started in 1981 with MS-DOS
and the IBM PC. In 1984 came the famous Macintosh from Apple. Windows 1.0 was released in
1985.

They found a bug (a moth) inside a computer in 1947 that made the program not behaving as
expected. This was the “first” real bug.

In the 80s and 90s we saw the beginning of the personal computer era that started with Mac
computers from Apple (Macintosh, 1984) and IBM computers from IBM (or IBM compatible
computers from other vendors) with MS-DOS and later Windows installed (Figure 2-1).

The beginning

" & File Edit Uiew Special

system Disk =———|
232K in disk 167K available

Disk Copy

,,,,

& Flle Edit Formal (eatroiz Fenctiens @ndows

File Uiew Special 'gle Eit Search
— [— aracter Paragrap
8, ﬂ.-ﬂ-_ o fincat

| £ \yIDOS

s
4 RBC.T Hicrosoft Windows indows. Also c
| ggll.lén MS-D0S Executive Addendum en

CALEN Uersion 1.81
CGA. 0 Copyright @ 1985, Microsoft Corp.

6. ¢ i 1
6.1 Prguesiion as
EL::I Disk Space Free: 38024K m::n of the WINLII
CLOCK Memory Free: 303K
CONTROL.EXE EGAMONO.GRB HPL{
COURA.FON EGAMONO .LGO B!

COURB .FON EMM.AT

COURC .FON EMN_PC KER!

pooler=no will

RUNNING BATCH [BAT) FILE:
It you run & standard applicati
should create a FIF file for the {$

Figure 2-1: The Beginning of Personal Computing

30

31 2 Software History

World Wide Web (WWW) was established in 1991. The first Web Browser, as we know it today,
came in 1994 (Netscape). Google was established as late as 1998. Facebook was first invented in
2004. The first smartphone was released in 2007 (iPhone).

In Figure 2-2 we see some of the people that have founded and shaped the modern software
industry.

Figure 2-2: Pioneers of modern Software Industry

The companies that they created still dominate the software industry today. Some of the people
are still active within these companies today, either as CEOs or members of the board.

Some of the largest software companies today are:
* Microsoft (established 1975), Bill Gates, Paul Allen
e MS DOS (1981), Office, Windows (1985), ...

* Employees (2012): 94.000, Revenue (2012): S74 bill.

Apple (Software and Hardware) (established 1976), Steve Jobs, Steve Wozniak
* Macintosh (1984), iPhone (1097), iPad (2012), iOS

* Employees (2012): 72.800, Revenue (2012): $158 bill.

Google (established 1986), Larry Page, Sergey Brin

Facebook (established 2004), Mark Zuckerberg

Part 1: Introduction

32 2 Software History

e More than 1 bill. users

In addition, we can mention companies like IBM, Oracle, Samsung (more hardware than software),
Amazon, SAP, Adobe, Symantec, VMware, etc.

2.2 Software Trends

The software industry has changed a lot since the 80s, and it is still changing very quickly. Figure
2-3 gives an overview of some important trends in the software industry today and tomorrow.

| | The
Apps . Cloud
CIoudCometing
Virtualization

Mobile
Softwear

Wearable Computin
P & Bring Your Own Device

Figure 2-3: Software Trends

Apps and Mobil devices: Everybody have a mobile device today and fewer PCs are sold than ever
before. Licensing: You don’t buy, but lease software these days and all your information is stored
in the Cloud, and some software is running in the Cloud (so-called Cloud Computing). The security
challenges is very important in this case.

The companies that develop software needs to face these facts and make the necessary changes
to survive.

“Softwear” and Wearable Computing: Now we have watches like Galaxy Gear, the Apple Watch,
Google Glass, etc.

Part 1: Introduction

33 2 Software History

In Figure 2-4 we see some examples of Software Trends.

Cloud Computing
I

Database

Cloud Computing @

everything and the kitchen sink Kachen

Figure 2-4: Software Trends Examples

Part 1: Introduction

3Software Development

In this chapter, we will give a short overview of software development, the challenges and what
kind of different software categories we have, what kind of documents that are needed and
created during the software development process, what kind of skills needed, etc.

Software Development (also known as application development, software design, designing
software, software application development, enterprise application development, or platform
development) is the development of a software product.

Software Engineering (SE) is the application of a systematic, disciplined, quantifiable approach to
the development, operation, and maintenance of software.

In Figure 3-1 we see how a software application typically interacts with users, the underlying
operating system and hardware.

User

U

Application
N

Operating System
L /\ 4

Hardware

\)

Figure 3-1: Software Interaction with Hardware and Users

34

35 3 Software Development

3.1 Challenges

In Figure 3-2 we see some of the challenges in software development.

How the customer
explanad it Leader understood i designed it wrote it Consukant described

How the Project How the Analyst How the Programmer How the Business

How the customer
was biled

How the project
was documented

How it was supported

Figure 3-2: Challenges with Software Development

Collaboration and communication within the team and with stakeholders, etc. is crucial when it
comes to creating good software.

Creating software is complicated. It is important to understand the customer’s needs! In some
way, you need to find out what the customer needs.

Market research, etc. is a good start, but in the end, you need to go much deeper to understand
the customer. Most of the time the customer doesn’t even know what they need.

3.2 Software Systems

In software development we have different kinds of systems, such as [1]:

* Stand-alone applications

Part 1: Introduction

36 3 Software Development

— These are application systems that run on a local computer, such as a PC. They
include all necessary functionality and do not need to be connected to a network.

* Interactive transaction-based applications

— Applications that execute on a remote computer and are accessed by users from
their own PCs or terminals. These include web applications such as e-commerce
applications.

* Embedded control systems

— These are software control systems that control and manage hardware devices.
Numerically, there are probably more embedded systems than any other type of
system.

* Batch processing systems

— These are business systems that are designed to process data in large batches. They
process large numbers of individual inputs to create corresponding outputs.

* Entertainment systems

— These are systems that are primarily for personal use and which are intended to
entertain the user.

* Systems for modeling and simulation

— These are systems that are developed by scientists and engineers to model physical
processes or situations, which include many, separate, interacting objects.

* Data collection systems

— These are systems that collect data from their environment using a set of sensors
and send that data to other systems for processing.

* Systems of systems
— These are systems that are composed of several other software systems.
We can split the software systems in 2 main categories:
Generic products
* Stand-alone systems that are marketed and sold to any customer who wishes to buy them.

* Examples — PC software such as graphics programs, project management tools; CAD
software; software for specific markets such as appointments systems for dentists.

Examples: Microsoft Office

Part 1: Introduction

37 3 Software Development

Customized products
* Software that is commissioned by a specific customer to meet their own needs.

* Examples —embedded control systems, air traffic control software, traffic monitoring

systems.

3.3 Documentation

Lots of documentation is involved in software development, see Figure 3-3. In this document, we
will go through all the documentation needed in the different phases involved in software

development.
Some important documents are:
e SRS —Software Requirements Specifications

o A document stating what an application must accomplish
e SDD - Software Design Document
o Adocument describing the design of a software application

e STP - Software Test Plan

o Documentation stating what parts of an application will be tested, and the schedule
of when the testing is to be performed

e STD - Software Test Documentation

o Contents: Introduction, Test Plan, Test Design, Test Cases, Test procedures, Test

Log, ..., Summary

More about Software Documentation later in this document.

Part 1: Introduction

3 Software Development

Project Management (Gantt Chart, etc.)

Start

Time

\ 4

1. Planning

2.Requierements
/Design
(The stakeholders, the

software team; architects,
UX designers, developers)

—

2. Testing
(QA people)

3. End-user
Documentation

(The people that
shall actually use
the software)

Finish

al

|

Software
Development Plan

High-Level
Requirements and
Design Documents

Detailed
Requirements and
Design Documents

Test Plans

Test Documentation

System
Documentation

Installation Guides

User Manuals

(SDP)
WHAT (SRS)
HOW (SDD)

ER Diagram (Database)
UML Diagrams (Code)
CAD Drawings, etc.

How to Test/ (STP)
What to Test

Proof that you have tested
and that the software works

as expected (STD)

Technical Stuff
(Super User/ IT dep.)

How to install it

How to use it
(End User)

Figure 3-3: Typical Documentation involved in Software Development

QA — Quality Assurance. Quality Assurance (QA) refers to the engineering activities implemented

in a quality system so that requirements for a product or service will be fulfilled.

3.4 lterations and Releases

In Software Development, we typically have different iterations and releases, as shown in Figure

3-4.

Part 1: Introduction

39 3 Software Development

Plans made and approved

Beta

Building structure finished, Fyrniture, Flowers and
Inside work on track small adjustments missing

Ready for Sale 6r Move in

Figure 3-4: Software Iterations and Releases

Part 1: Introduction

Part 2 : Software
Engineering

In this part, we introduce the different features and topics involved in software engineering, such
as software teams, software development processes, software project management, etc.

40

4Development Teams

A typical Software Team consists of the following roles:

e Project Manager

e System Architect

e UX Designer (Software Designer)
e Programmer

e Software Tester

In addition, we have the Stakeholders or Customers that play an important role in the
development.

In Figure 4-1 we see a typical Software Team.

Software Team

Stakeholders
Project Manager '
—
Software Tester
“ T—
Software Designer ~
‘/ System Engineer
U , Programmer
il

Software Architect

Figure 4-1: Software Team

A System Engineer is a general person that could be a Programmer, Architect, Designer, Tester in
different phases in the project, or he could be a tester in one project and a programmer in another
project —all in one person. That is usually the case in small companies, while in larger companies
these roles (designer, tester, programmer) could be a full-time job.

41

42 4 Development Teams

4.1 Teams

To create successfully software, collaboration inside the team is essential.

C—_
. ¥

\/W UX Designer

Programmer

Figure 4-2: Team Collaboration

Itis important that the team collaborate. Communication as well!

4.2 Roles

A typical Software Team consists of the following roles:

e Project Manager

e System Architect

e UX Designer (Software Designer)
e Programmer

e Software Tester

Part 2: Software Engineering

43 4 Development Teams

In addition, we have the Stakeholders or Customers that play an important role in the
development.

We will discuss these roles in more detail below.

4.2.1 Stakeholders

All the people that has an interest in the outcome of the software are called Stakeholders. In most
cases the Stakeholders are referred to as “Customers” but others may also be referred to as
stakeholders, such as management, shareholders, etc.

4.2.2 Project Manager

The Project Managers have the responsibility of the planning, execution and closing of the project.

More about Project management in a later chapter.

4.2.3 System Architect

With “Technical Design” we mean the Platform and Architecture Design, i.e., how to build the
software.

This is typically done by a so-called Software/System Architect.

4.2.4 UX Designer

UX Design is the Design of the User eXperience (UX) and the Graphical User Interface (GUI),
sometimes also called Human Machine Interface (HMI). This is what the end user of the software
sees.

This is typically done by a so-called UX Designer.

4.2.5 Programmer

The Programmer or the Developer is doing the actual implementation of the software, i.e., the
coding.

4.2.6 Software Tester

Before the customer can start using the software it needs to be properly tested. The
Developer/Programmer needs to test his software, but since software consists of several software

Part 2: Software Engineering

44 4 Development Teams

modules and components created by different developers, we need dedicated software testers
that can test the software on a higher level.

The Customers are/should also be involved in the testing as well.

Part 2: Software Engineering

5Software Development
Phases

In software development, we have the following phases:

e Requirements (e.g., from Customer)

e Analysis and Design

e Implementation, Coding

e Documentation

e Testing

o Deployment, Installation and Maintenance

This chapter introduces these phases. Figure 5-1 shows an overview of the different phases

involved in Software Development:

Requirements
p \
/
Deployment / .
Design
//"\\\
;- P
// 3 \ 9 // \\\
\ / \
[. | A [)
., Testing | <___ | Implementation

/

Figure 5-1: Phases in Software Development

45

46 5 Software Development Phases

5.1 Requirements

In the requirements, we describe what the system should do. The requirements include both
functional requirements and non-functional requirements [1].

Functional Requirements: Statements of services the system should provide, how the system
should react to inputs and how the system should behave in different situations. May state what
the system should not do.

Non-Functional Requirements: Constraints on the services or functions offered by the system
such as timing constraints, constraints on the development process, standards, etc. Often apply to
the system rather than individual features or services.

' \ e >
[TLL NEED TO KNOW FIRST OF ALL, | s (N
| YOUR REQUIREMEMTS § WHAT ARE YOU | I™ TRYING TO I MEAN WHAT ARE |
[| MAKE YOU DESIGN YOU TRYING TO
| BEFORE I START TO a TRYIMG Tl:flFI | . MY SOFTLIARE. ACLOMPLISH LWUITH
| DESIGH THE SOFTLIARE. i \ ACCOMPLISHT _,-"I _) R e SOFTIARET)
- T - a — . s — .
4) ﬁ !
bo
5 &= _?,
! le |

{1 wonT rnow st B I ™y ToceTTHIS |

1 CAM ACCOMPLISH | | CONCEPT THROUGH YOUR | CAN YOU DESIGM
UNTIL ¥OU TELL ME THICK SKULL: THE | IT TO TELL YOU
LIJHAT THE SOFTLJARE | SOFTWARE CAN DO E |‘ MY REOUIREMENTS?/
L CAN DO, | | WHATEVER T DESIGN R ———————
= = — \ IT TO DO J
s m e E n;
B *

The requirements are often collected in a so-called “Software Requirements Specification (SRS)”
document.

The SRS could contain stuff like [2]:

e Introduction
o Purpose
o Definitions
o System overview
o References
e Qverall description
o Product perspective
= System Interfaces
= User Interfaces
= Hardware interfaces
= Software interfaces
= Communication Interfaces
= Memory Constraints

Part 2: Software Engineering

47 5 Software Development Phases

= QOperations
= Site Adaptation Requirements
o Product functions
o User characteristics
o Constraints, assumptions and dependencies
e Specific requirements
o External interface requirements
o Functional requirements
o Performance requirements
o Design constraints
= Standards Compliance
o Logical database requirement
o Software System attributes

= Reliability

= Availability

= Security

= Maintainability
= Portability

e Other requirements

The Requirements is normally given by the Customer if we deal with customized products. The
software requirements document is the official statement of what is required of the system. It
should include both a definition of user requirements and a specification of the system
requirements. It is NOT a design document. As far as possible, it should include a set of WHAT the
system should do rather than HOW it should do it [1].

5.2 Design

In the design phase, we use the specification and transform it into descriptions of how we should
do it.

In principle, requirements should state what the system should do and the design should describe
how it does this — but in practice this is not so easy! - In practice, requirements and design are
inseparable.

We can divide design into 2 main groups:

e Technical Design — Platform and Architecture Design, i.e., how to build the software.

e UX Design — Design of User eXperience (UX) and the Graphical User Interface (GUI),
sometimes also called Human Machine Interface (HMI). This is what the end user of the
software sees.

Part 2: Software Engineering

48 5 Software Development Phases

5.2.1 Technical Design

Technical Design is the Platform and Architecture Design, i.e., how to build the software.

This is typically done by a so-called Software Architect.

5.2.2 UX Design

UX Design is the Design of the User eXperience (UX) and the Graphical User Interface (GUI),
sometimes also called Human Machine Interface (HMI). This is what the end user of the software
sees.

This is typically done by a so-called UX Designer.

5.3 Implementation

Implementation = Coding.

Software is usually designed and created (coded/written/programmed) in integrated development
environments (IDE) like Eclipse, Xcode or Microsoft Visual Studio that can simplify the process and
compile the program to an executable unit. Software is usually created on top of existing software
and the application programming interface (API) that the underlying software frameworks
provide, e.g. Microsoft .NET, etc.

Most of the software has a Graphical User Interface (GUI). Normally you separate the GUI design
and code in different layers or files.

CODING IS AN ART

IDON'T
GET YOUR
CODE ..\"..

L.
L.
L.

[http://geek-and-poke.com]

i

s

9400 g %000
L

YOou
HAVE TO
OPEN YOUR
MIND

0\ T

ML

MODERN ART

Part 2: Software Engineering

49 5 Software Development Phases

More about implementation later in this document.

5.4 Testing

Testing can be performed on different levels and by different persons. Testing is a very important
part of software development. About 50% of the software development is about testing your
software.

Creating User-friendly Software is Crucial!

More about Testing later in this document.

5.5 Deployment

What is Deployment?
Software deployment is all the activities that make a software system available for use.
Examples:

Get the software out to the customers

Creating Installation Packages
e Documentation, e.g., Installation Guide, etc.

Installation

e etc.
Deployment strategies may vary depending of what kind of software we create, etc.
More about Deployment later in this document.

When the software is deployed, or installed, you normally go into a Maintenance phase. The
maintenance of software involves bug fixes of the software after the software is released, etc. At
some time, you also need to start planning new releases of the software.

Part 2: Software Engineering

6Software Development
Process

There are lots of different software development processes or methods in use today [3], e.g.:

e Waterfall model

e V-model

e Spiral model

e Unified Process (UP)/ Rational Unified Process (RUP)
e Scrum

e eXtreme Programming (XP)

e Lean Software Development

e TDD (Test Driven Development)
e Lean Software Development

e Kanban

e etc.

These processes or models may be divided in 2 main categories; Plan-driven models and Agile
methods. The Waterfall model, V-model and the Spiral model is so-called plan-driven models,
while Scrum and eXtreme Programming are so-called Agile methods.

SIMPLY EXPLAINED

ek & poke

SOMETHING

Sy

-« W

GREAT
SOFTWARE

DEVELOPMENT PROCESS

[http://geek-and-poke.com]

50

51 6 Software Development Process

Traditionally plan-driven methods where used in software development, while today Agile
methods such as Scrum have become very popular, especially in smaller development teams.

Plan-driven models (e.g., Waterfall) generally produce more documentation than Agile models.

In Figure 6-1 we see an overview of some of the most used methods.

Traditional Plan-driven ‘ Agile Methods ‘
Methods |
e———— eXtreme. ’ ——
Waterfall -ivlode Programming
XP
Method . (XP)
Operation
g::ﬁ. g:.’ Verif;i:i;tuon Mlh::':lnc-
Validation
. Project Requirements System -
Requlrements pefinition Archl.a:turn nr\\,;r\ﬁﬁs:?l:n s ’ N | SN) \ -
[\
Detailed '"Tt:sgtf'::?: 32 Project 3 y ;U,, y = 4
Design Design Verification In’;ee{:rzagn prostuct Backion <ot Backion —
Implameaniation
Implementation e
Feature Driven
Verification ‘ Development
Lean Software (FDD)
Maintenance Development

Figure 6-1: Software Development Methods

In Figure 6-2 we see the main difference between Agile development and ordinary plan-driven
development.

Plan-based development

Requirements
engineering

Design and
implementation

Requirements
specification

Requirements change
requests

Agile development

Requirements
engineering

Design and
implementation

Figure 6-2: Plan-driven vs. Agile Development [1]

Part 2: Software Engineering

52

6 Software Development Process

HOW DO YOU KNOW IT’'S AGILE?

PART 1: NO CODE OWNERS

[http://geek-and-poke.com]

6.1 Plan-driven models

We have different plan-driven models such as the Waterfall model, V-model, Spiral model which

we will discuss in more details.

6.1.1 Waterfall model

The Waterfall model [4] consists of the following phases:

Requirements specification (Requirements analysis)
Software design

Implementation and Integration

Testing (or Validation)

Deployment (or Installation)

Maintenance

Traditionally with the Waterfall model, you can only start on the next phase when the previous
phase is finished. Therefore, it is called the Waterfall method, see Figure 6-3.

Part 2: Software Engineering

53 6 Software Development Process

The Waterfall Model

Planning to create a new Software

Finished

Requirement .
: A Sequential Process

v . | Finished

Not Finished? . ‘
-Go back and Fixit! 7 Des'gn q
y ;
Not Finished? ‘ | | ; 7 Finished
i 2 L
-Go back and Fixit! | mplementation n

4

Not Finished? ‘ T . Finished
-Go back and Fixit! esting '
\ 4
You cannot go to next phase before Deployment
gy . Not Finished? :
finsihed the previous phase i Maintenance

Software Finished
Figure 6-3: Waterfall model [4]

In practice, there is impossible to create perfect requirements and design before you start
implementing the code, so it is common to go back and update these phases iteratively.

6.1.2 V-model

The V-model [5] is derived from the more traditional Waterfall model.
The V-model is an extension of the waterfall model, but its using a more flexible approach.

“The V-Model reflects a project management view of software development and fits the needs of
project managers, accountants and lawyers rather than software developers or users.”

Part 2: Software Engineering

54 6 Software Development Process

Concept of Operation
Sl b Uerii;ir-:_:lgtion Main?gr?ance
_ Validation
Project Requirements System
Definition and Verification
Architecture and Validation

Integration,

Detailed Test, and Project
Design Verification Test and
Integration

Implameantation

S
. i
Time

Figure 6-4: V-model [5]

As we see in Figure 6-4, the left side is about requirements and design, while the right-side of the
model is about testing and validating.

6.2 Agile Software Development

Agile software development is a group of software development methods based on iterative and
incremental development.

THAT MEANS NO MORE
PLANNING AND NO MORE
DOCUMENTATION. JUST

START WRITING CODE

AND COMPLAINING.

WERE GOING TO
TRY SOMETHING
CALLED AGILE
PROGRAMMING.

‘™M GLA THAT
‘}T HGA\é 2 WAS YOUR

NAME. TRAINING.

13607 ©2007 Scott Adams, Inc./Dist. by UFS, Inc

www.dilbert.com scottadama®acl.com

So, what is Agile development? — Here is a short summary:

e Agroup of software development methods

e |[terative approach

e Incremental: Software available to Customers every 2-4 weeks
e Self-organizing and cross-functional Teams

e Refactoring

Part 2: Software Engineering

55 6 Software Development Process

In Figure 6-5 we see some important Agile features and principles.

-I Pair
Customer | Agl € Programming
InvolvementJ

Incremental

\ (Less Documentation.
. k in Iterations
Test Driven J Wor Only whats necessary

Development (TDD)

‘\
Communication J
Continously L
~ Integrate Changes

Working Software
._ at All Times
Refactoring

Figure 6-5: Agile Features and Principles
Examples of popular Agile methods:

e Scrum
e eXtreme Programming (XP)

In Figure 6-6 we see the key features with Agile Software Development.

Agile Software Development

Iterative and Incremental Approach for Software Development

Self-organizing and cross-functional Teams

Incremental: Software available to Customers
every 2-4 weeks

Working Software at all times!

Figure 6-6: Agile Software Development

Figure 6-7 shows some main differences between Agile development and more traditional
development methods, such as, e.g., the Waterfall method.

Part 2: Software Engineering

56 6 Software Development Process

VISIBILITY i ADAPTABILITY

W\/-—\

BUSINESS VALUE RISK

— AGIE DEVELOPMENT w— - - TRADITIONAL DEVELOPMENT

Figure 6-7: Agile vs. Traditional Development [6]

The Manifesto for Agile Software Development:

In 2001, some software developers met to discuss development methods. They published the
Manifesto for Agile Software Development to define the approach now known as agile software
development.

The Manifesto for Agile Software Development is as follows [7]:

We are uncovering better ways of developingistesoftware by doing it and helping others do
it.strThrough this work, we have come to value:

e Individuals and interactions over processes and tools

e Working software over comprehensive documentation
e Customer collaboration over contract negotiation

e Responding to change over following a plan

That is, while there is value in the items onistrithe right, we value the items on the left more.

Part 2: Software Engineering

57 6 Software Development Process

IT'S NG BLE!
YOoU DD NOT GET YOUR

STCRY DONE LNTL THE
w

& Al
}S\B C/%

fir.. B

(..

aned g yeal

AGILE MANIFESTO

[http://geek-and-poke.com]

Burndown Chart:

A burn down chart is a graphical representation of work left to do versus time. The outstanding
work (or backlog) is often on the vertical axis, with time along the horizontal. That is, it is a run
chart of outstanding work. It is useful for predicting when all the work will be completed.

It is often used in agile software development methodologies such as Scrum. However, burn down
charts can be applied to any project containing measurable progress over time.

In Figure 6-8 we see a typical Burndown chart.

Part 2: Software Engineering

58 6 Software Development Process

Burndown Chart

Actual
Burndown Tracking the Progress

\deal of the Project

Burndown

(SANOH) 40N Sululeway

Sprint
Finished

1 2 3 .. 29
Days

Figure 6-8: Burndown Chart

6.2.1 Waterfall vs. Agile

Agile is more flexible than traditional methods (like the waterfall).

Here are some key factors that separates the traditional waterfall method versus the more flexible
Agile methods, such as Scrum:

e Agileand Scrum is based on Iterations while Waterfall is Sequential

e Agileand Scrum focus on less documentation

e Agileis good for small projects — not so good for larger projects?

e [f the Customer don’t know what he wants in detail — Scrum is a good approach

In Figure 6-9 we see some important differences between the traditional waterfall method and
the Agile Development approach. We see that Agile delivers value in each iteration of the
development.

Part 2: Software Engineering

59 6 Software Development Process

Waterfall vs. Agile
Value Delivery

wes Risk of Egilure

Waterfall ,Q

Income

Time Time

Figure 6-9: Waterfall vs. Agile Development

6.2.2 eXtreme Programming (XP)

eXtreme Programming or shorted XP is a popular Agile method. Typical features in XP are as

follows:

e Pair Programming

e Code Reviews

e Refactoring

e Unit Testing - In XP you start by writing Unit Tests before you start coding
e Standup Meetings

EXTREME PROGRAMMING

I CANT GIVE YOU
ALL OF THESE
FEATURES IM THE
FIRST VERSIOM.

OKAY, HERES A
STORY : YOU GIVE
ME ALL OF MY
FEATURES OR T'LL
RUTHN YOUR LIFE.

AND EACH FEATURE
MEEDS TO HAVE
LIHAT WIE CALL A
“USER STORY .

scottadams @ aal.com

S
ilielz3 83002 United Fasturs Syndicsts, inz

www. dilbert.com

e

Copyr-ight 2 28832 United Feature Syndicate, lnc.

In Figure 6-10 we see how XP works in practice.

Part 2: Software Engineering

60 6 Software Development Process

Planning/Feedback Loops

Release Plan
Months
Tteration Plan

Weeks

Acceptance Test
Days
Stand Up Meeting
One Day
Pair Negotiation

Hoursj

Unit Test

Minutes

Pair Programming
Seconds

Code
Figure 6-10: eXtreme Programming

In XP, they practice so-called “Pair Programming” (Figure 6-11), meaning 2 developers working
together.

Figure 6-11: Pair Programming [8]

So, is Pair Programming Good or Bad? There exists various studies of the productivity of Pair
Programming [1]:

e Study 1: Comparable with that of 2 developers work independently

e Study 2: A significant loss in productivity compared with 2 developers working alone
A reasonable question is: Should the 2 developers have the same skills or not?

Newer less, there are benefits with XP:

e Collective Ownership for the code created and the results of the project.

Part 2: Software Engineering

61 6 Software Development Process

Continuous informal Review process because each code line is looked at by at least 2
people

e |t supports Refactoring, which is a continuous process of software improvement

. Less time is spent on repairing bugs.

e Improved Code Quality

e |treduces the overall risk

SCHIZOPHRENIC CODERS

\l(

z

HA
YOU DOING?

)

N

(BN/

G;gﬁ_'n:;ue) (N
Lzl

geek & poke

[http://geek-and-poke.com]

6.2.3 Scrum

Scrum [9] is a so-called Agile method, and it has become very popular today. In Figure 6-12 we see
an overview of the Scrum method.

Scrum is simple and easy to understand. The method is more flexible and more informal than plan-
driven methods.

Part 2: Software Engineering

62

6 Software Development Process

& _\Daily Scrum Meetings
\\@
. 2P QA Sprint

Sprlnt(6day5> Tawi

Product Owner

))
' Sprint Backlog
) s @
Product Backlog /4 ?
N

Stakeholders Scrum Master -

‘ ﬂ | Review
” PR
H

Development Team
3-9 persons

Figure 6-12: Scrum Overview

In short, Scrum is a Framework for Software Development.

Agile Software Development method
Simple to understand
Flexible
Extremely difficult to master!
Self-organizing Teams (3-9 persons)
Scrum Team:

o Product Owner

o Scrum Master

o Development Team

Some important Scrum Events are:

The Sprint (duration between 14-30 days)
Sprint Planning Meeting (8 hours if 30 days’ sprint)

Daily Scrum Meeting (Max 15 min, every day at the same time) (also called Standup
Meeting)

Sprint Review (4 hours if 30 days’ sprint)

An example of a Daily Scrum Meeting is shown in Figure 6-13. It is normal to held this meeting as a

“standup meeting”, where participants standing during the meeting.

Part 2: Software Engineering

63 6 Software Development Process

o |

Figure 6-13: Daily Scrum Meeting (Standup Meeting) [9]

Daily Scrum Meeting:

Important features with the Daily Scrum Meeting are as follows:

* Max 15 min.

* The meeting is held at the same time and place every day

* “Stand Up” Meeting

¢ Purpose:
— Synchronize activities and create a plan for next 24 hours.
— Track Progress

* Agenda — Each Team member explains:
— What has been accomplished since last meeting?
— What will be done before the next meeting?

— What obstacles are in the way?

6.2.4 Kanban

Part 2: Software Engineering

64 6 Software Development Process

Kanban is based on Lean and Toyota production principles and Just-in-Time principles. Kanban
has fewer “rules” than scrum. Kanban is flow-based, while Scrum is Time box-based (Sprints).
Kanban focus on limit the WIP (Work in Progress). Kanban has focus on estimation.

In Kanban, they use a Kanban board (Figure 6-14) to track the progress. The Kanban board is very
like the Task board used in Scrum.

ACmirastraton a John Seaeth

To-do - Do today - In progress + o Done -
20
- o
& ABOW U O ChaNGe pere 2 Produce Wnancal repant : Adveniie o few pe0OUT
o ™ 7 Make gressselense -ﬁ W4tng ath AT
e PTOS300 S000CH SOMOINOg o | Vite 200 eclry
JSATLNCe 300 ColeaSorgt COMENCE maSatwes
P 2 Redew 30000ty Quleines A m—
= 156 SASS for s54 2 < Tremard CRU vielrats
e USe SASS Kv silesbaets — brgteant (ialrston 'ﬂ Create » DoDe A0SO~
P e COARNE Boem IS AL MOOIND Py
e DEI0 303 300 13 At wtHng 00 e FHOOLS & pregare ABIDN%0 ~ =
e Caiens 230 @ MO PROST Pt L EOUuthe SBITNG TeMOVe SUBio 30
003 SWGD 3 INoan
m [] 7 Sheose
e Hedture pertiemance A Be 2. Dewwicp 30 Adnoed 300 %x 0o
motie 320 LRI USerS Vorle $CrCRE & CoCuTneiecn
R
~ "~ - 2 Reledss vatsion 10
s Create » Sooum LRIt COMCAdn] 1 0e)
(2]
m () 5. Credte a0 lghoow 3o
e DOCUMEnt T SO0ACH AP 2. Coedte 3Fcetock e
.A ActoMate ety
L]
" fa VeI 0308 Cooiiee
_‘ Reledie verson 20 == ~
.A LOBS SIS W Cusiomes dats
& Pomodoro temer a u m | Help & feedback

Figure 6-14: Kanban board

6.3 Hybrid Process Models

6.3.1 Unified Process (UP)/ Rational Unified Process
(RUP)

The Unified Process (UP)/ Rational Unified Process (RUP) is a so-called hybrid process model [1]. It
takes elements from many of the traditional plan drive methods as well iterative/incremental
delivery, which is an important part of Agile methods.

The RUP has been designed to work together with UML (Unified Modelling Language).
In UP we have 4 different phases [10]:

e Inception
e Elaboration

Part 2: Software Engineering

65 6 Software Development Process

e Construction

e Transition

Figure 6-15 shows these 4 phases.

A

Resources

Time

Inception Elaboration Construction Transition

Figure 6-15: Phases in Unified Process (UP) [10]

6.4 Summary

Agile methods have become very popular today. Agile methods are good in some situations, while
more traditional methods are better in other situations.

To create great software, we need to combine the best of all these approaches, and adjust them
to fit the needs of your company. There are lots of different kinds of software, and one method is
not fit to solve all these different situations.

Agile methods have less focus on documentation

6.5 Exercises

1. What is a Software Development Process? Why is it important to have a good Software
Development Process?

2. Explain Plan-driven software development in general
3. Give some examples of such Plan-driven software development methods

4. Explain Agile software development in general

Part 2: Software Engineering

66

6 Software Development Process

10.

11.

12.

13.

Give some examples of Agile software development methods

Explain the Waterfall method

Explain the differences between Agile and plan-driven development. Give some examples in
each category

Explain some features used in eXtreme Programming (XP)?

What is Scrum?

Give examples of Advantages and Disadvantages with Scrum

What is a Daily Scrum Meeting?

What is the different phases involved in software engineering?

Suggest a Software Project where it may be beneficial to use the Waterfall model and another
where Scrum is the best choice

Part 2: Software Engineering

7Scrum

Scrum [9] is a so-called Agile method, and it has become very popular today. In Figure 7-1 we see

an overview of the Scrum method.
Scrum is simple and easy to understand. The method is more flexible and more informal than plan-

driven methods.

’ & \Daily Scrum Meetings

24h

\ S
: rint
a’ Sprint g 9 Repview
@ o
Product Owner ﬂ

S

L Sprint Backlog -

£ “3
Product Backlog 4 '
N

Stakeholders Scrum Master -
Development Team

3-9 persons

Figure 7-1: Scrum Overview

In short, Scrum is a Framework for Software Development.

Agile Software Development method
e Simple to understand

e Flexible

e Extremely difficult to master!

e Self-organizing Teams (3-9 persons)
e Scrum Team:

o Product Owner

o Scrum Master

o Development Team

7.1 The Scrum Process

Figure 7-2 shows the Scrum Process.

67

68 7 Scrum

24 h

30 days

—

. . Working increment
Product Backlog Sprint Backlog Sprint of the software

Figure 7-2: Scrum Process [9]

7.2 Scrum Events

* The Sprint (duration between 14-30 days)
* Sprint Planning Meeting (8 hours if 30 days’ sprint)

* Daily Scrum Meeting (Max 15 min, every day at the same time) (also called Standup
Meeting)

* Sprint Review (4 hours if 30 days’ sprint)

An example of a Daily Scrum Meeting is shown in Figure 7-3. It is normal to held this meeting as a
“standup meeting”, where participants standing during the meeting.

Part 2: Software Engineering

69 7 Scrum

Figure 7-3: Daily Scrum Meeting (Standup Meeting) [9]

7.2.1 Daily Scrum Meeting

Important features with the Daily Scrum Meeting are as follows:

* Max 15 min.

* The meeting is held at the same time and place every day

* “Stand Up” Meeting

* Purpose:
— Synchronize activities and create a plan for next 24 hours.
— Track Progress

* Agenda — Each Team member explains:
— What has been accomplished since last meeting?
— What will be done before the next meeting?

— What obstacles are in the way?

Part 2: Software Engineering

70 7 Scrum

g
YOUR COMPETITORS E LJELL TOP THAT BY g IT;s
ARE FASTER BECAUSE - HAVING MEETIMNGS =
THEY HAVE MEETINGS |& WHERE EVERYONE 3 WORKING!
LJHERE EVERYONE HAS |E DOES JUMPING JACKS = %l Vit -
TO STAND UP. g LIHILE I PELT THEM EWCL
ﬁ WITH OFFICE SUPPLIES. |E :
2 -
15 1 5
5 o kel :
i oLy |z
> ;

7.3 Scrum Artifacts

* Product Backlog
* Sprint Backlog

* Increment

Scrum'’s artifacts represent work or value in various ways that are useful in providing transparency and
opportunities for inspection and adaptation. Artifacts defined by Scrum are specifically designed to
maximize transparency of key information needed to ensure Scrum Teams are successful in delivering a
“Done” Increment [11].

7.4 The Scrum Team

The Scrum Team have the following members:
* Product Owner
* Scrum Master
* Development Team

In addition, we have the Stakeholders, but they are not part of the Scrum team itself.

Part 2: Software Engineering

71 7 Scrum

INTERESTING.
BUT WHAT IS A
"SPRINT"F

LEARNING AGILE

[http://geek-and-poke.com]

7.5 Scrum Meetings

So, if we summarize, we have 4 different meetings in Scrum:

e Sprint Planning Meeting
e Daily Scrum Meeting

e Sprint Review Meeting
e Retrospective Meeting

Figure 7-4 summarizes the different meetings (purpose, duration and frequency).

Meeting Purpose Duration Frequency
Sprint Determine what work to do in the coming sprint. Two hours per week in the Once per
Planning sprint, up to four hours sprint
Meeting

Daily Scrum Allow team members to commit, collaborate, and communicate risks. Fifteen minutes Daily
Meeting

Sprint Review Show the customer and other stakeholders the work that the team Two hours per week in the Once per
Meeting accomplished in the sprint, and receive feedback. sprint, up to four hours sprint
Retrospective Identify and implement ideas for process improvement. Three hours Once per
Meeting sprint

Figure 7-4: Scrum Meetings

Part 2: Software Engineering

72 7 Scrum

For Scrum meetings, we have the following guidelines:

e The meeting agenda should be clear.

e [fteam members start a discussion that does not address the purpose of the meeting, the
members should take the discussion offline, to be completed later. The Scrum Master
should identify and indicate when team members should take a discussion offline.

e All meetings should follow the basic structure that is described for that meeting.

e Meetings should start on time, even if some team members are late.

e Team members should be on time except in rare, unavoidable cases. If your schedule
prevents you from being on time regularly, the conflict should be resolved as soon as
possible. If necessary, the Scrum Master should adjust the meeting time to resolve the
conflict if the change does not unfairly inconvenience another member of the team.

e Each team member should come to the meeting prepared.

e Meetings should finish on time. In most cases, the length of the meeting is determined by
the length of the sprint. For example, take two hours for a sprint planning meeting if the
sprint is one week long and four hours if the sprint is two weeks long.

e Scrum enforces this meeting structure to a level that might make people uncomfortable.
This reaction comes from the pressure to be on time, the peer accountability that is
associated with making and keeping commitments, and the transparency that is required
to actively participate. Daily Scrum meeting are also usually a standup meeting.

7.6 Scrum Terms

Below we summarize the terms used in Scrum.
Scrum:

Scrum is a framework structured to support complex product development. Scrum consists of
Scrum Teams and their associated roles, events, artifacts, and rules. Each component within the
framework serves a specific purpose and is essential to Scrum’s success and usage.

The Scrum Team:

The Scrum Team consists of a Product Owner, the Development Team, and a Scrum Master. Scrum
Teams are self-organizing and cross-functional. Self-organizing teams choose how best to
accomplish their work, rather than being directed by others outside the team.

Development Team:

The Development Team are the professionals who do the work of delivering a potentially
releasable Increment of “Done” product at the end of each Sprint. Development Teams are
structured and empowered by the organization to organize and manage their own work.

Product Owner:

Part 2: Software Engineering

73 7 Scrum

The Product Owner is the person responsible for maximizing the value of the product, the work of
the Development Team, and management of the Product Backlog.

Scrum Master:

The Scrum Master is a servant-leader for the Scrum Team responsible for ensuring Scrum is
understood and enacted. Scrum Masters do this by ensuring that the Scrum Team adheres to
Scrum theory, practices, and rules.

Product Backlog:

The Product Backlog is an ordered list of everything that might be needed in the product and is the
single source of requirements for any changes to be made to the product. The Product Owner is
responsible for the Product Backlog, including its content, availability, and ordering.

Sprint Backlog:

The Sprint Backlog is the set of Product Backlog items selected for the Sprint plus a plan for
delivering the product Increment and realizing the Sprint Goal. The Sprint Backlog is a forecast by
the Development Team about what functionality will be in the next Increment and the work
needed to deliver that functionality.

Increment:

The Increment is the sum of all the Product Backlog items completed during a Sprint and all
previous Sprints.

Sprint:

The heart of Scrum is a Sprint, a time-box of one month or less during which a “Done”, useable,
and potentially releasable product Increment is created. Sprints have consistent durations
throughout a development effort. A new Sprint starts immediately after the conclusion of the
previous Sprint.

Sprint Planning Meeting:

The work to be performed in the Sprint is planned at the Sprint Planning Meeting. This plan is
created by the collaborative work of the entire Scrum Team.

Daily Scrum:

The Daily Scrum is a 15-minute time-boxed event for the Development Team to synchronize
activities and create a plan for the next 24 hours. This is done by inspecting the work since the last
Daily Scrum and forecasting the work that could be done before the next one.

Sprint Review:

Part 2: Software Engineering

74 7 Scrum

A Sprint Review is held at the end of the Sprint to inspect the Increment and adapt the Product
Backlog if needed. During the Sprint Review, the Scrum Team and stakeholders collaborate about
what was done in the Sprint. Based on that and any changes to the Product Backlog during the
Sprint, attendees collaborate on the next things that could be done. This is an informal meeting,
and the presentation of the Increment is intended to elicit feedback and foster collaboration.

Sprint Retrospective:

The Sprint Retrospective is an opportunity for the Scrum Team to inspect itself and create a plan
for improvements to be enacted during the next Sprint. The Sprint Retrospective occurs after the
Sprint Review and prior to the next Sprint Planning Meeting. This is a three-hour time-boxed
meeting for one-month Sprints. Proportionately less time is allocated for shorter Sprints.

7.7 Tips and Tricks

Here are some Tips and Tricks when performing Agile/Scrum:
* Bring the Customer to the Daily Scrum Meetings
* Check out Pair Programming
* Use a Task Board (Whiteboard with Sticky Notes)
* Write Tests before you Write Code

* Continuously Integrate Changes and have Code Reviews and do continuous Code
Refactoring

* Prioritize the Product Backlog
* Have Demonstrations for the Customer during the Project

* Besure to have a common understanding of Goals, Problems and Solutions

Part 2: Software Engineering

3Project Management

Project management is the key factor in any software development projects. Project management
is the discipline of planning, organizing, motivating, and controlling resources to achieve specific
goals.

In Figure 8-1 we see the well-known project triangle.

Scope

Features, Functionality,
Performance

- Quality

Vi 4 \
N\
\

Cost /£ \ Time

Resources, Budget Schedule, Deadlines

Figure 8-1: Project Triangle
Here are some Key factors for successful project management:

e Proper Planning

e Kick-off and Brainstorming

e Planning and Estimation

e Project Tracking

e Communication and Collaboration

e Meetings

e Using proper Tools, such as e.g., Azure DevOps

75

76 8 Project Management

8.1 Project Planning

Software development involves lots of activities that need to be planned and synchronized. To do
that we need good tools for these activities. The Gantt chart is probably the most used tool. In
addition, we need to have different meetings to plan and coordinate the different activities.

Agile Development needs also some kind of Project Management and Planning, which we will
discuss in more detail later in this chapter.

--- AND THE
LAST 2 MONTHS BEFORE
THE DEADLINE WE'VE
RESERVED FOR TESTING
AND DOCUMENTATION

geek & poke

)

1 -

PART 1: PROJECT PLANNING

[http://geek-and-poke.com]

8.2 Kick-off/Brainstorming

A Project should always start with a Kick-off meeting where a brainstorming session is important
of that meeting.

During the brainstorming, you should:

* Involve all in the group

Part 2: Software Engineering

77

8 Project Management

* Discuss what you are going to do in the project

* How are you going to solve the project?

etc.

In addition to get good ideas for solving the project, you should learn from previous projects.

Examples: Who are going to solve the different parts, what kind of Frameworks are you going to

use, what kind of development tools shall you use, etc.

KICK-OFF MEETING

THIS TIME WE'LL
WRITE TESTS FOR
EACH AND EVERY
LINE OF CODE

YES! AND THIS TIME WE
WILL BEGIN TO DOCUMENT
THE CODE FROM DAY ONE

YES!
AND THIS TIME WE
WON'T ALLOW NEW
REQUIREMENTS TO
SLIP IN UNLESS WE
GET MORE TIME OR
RESOLIRCES

YES! AND THIS
TIME WE'LL
INTEGRATE
CONTINOUSLY

YES! AND THIS
TIME WE'LL MAKE
A REALISTIC
PROJECT PLAN

YES! AND THIS
TIME WE WON'T
SHIP UNTIL WE HAVE
INISHED ALL TESTS

YES! AND THIS
TIME WE WILL
REFACTOR
REGULARLY

W

[http://geek-and-poke.com]

Part 2: Software Engineering

78 8 Project Management

8.3 Software Development Plan (SDP)

Communication is the key to success! Below we list some examples how to avoid Communication
Problems [12]:

e Listentoall with concentration
e Don’t pre-judge

e Give all team members a turn
e Seethevalueineveryidea

e Don’t make assumptions

e Ask questions to clarify

e When in doubt, communicate

A good idea is to create a Software Development Plan. The Software Development Plan gives an
overview of all the communication within the project or within the team, i.e., what kind of
communication, how the communication should be done, etc.

Examples of Communication:

o Meetings: The Team will meet every Monday from ...

e Standards: Which Word processor, Templates, etc.

e E-mail... or other communication platforms, ...

e Collaboration: How will you communicate? Work together on Tuesdays, ...
e Other Tools: Microsoft Project, ...

e etc.
The Software Development Plan typically includes the following sections:

1. Introduction: This briefly describes the objectives of the project and set out the constraints
(e.g., budget, time, etc.) that affects the management of the project

2. Project Organization: This section describes how the development team is organized, the
people involved and their roles in the team.

3. Risk Analysis
4. Hardware and Software Resource Requirements

5. Work Breakdown (WBS, Work Breakdown Structure): Break down the project in into
activities and identifies milestones

6. Project Schedule: Shows dependencies between activities, the estimated time required to
reach each milestone, allocation of people to activities. (5) and (6) is typically done in a
Gantt Chart (created in e.g. Microsoft Project)

Part 2: Software Engineering

79 8 Project Management

7. Monitoring and Reporting Mechanisms: Definition of the Management Report that should
be produced, when these should be produced, etc.

Other words for the Software Development Plan may be “Communication Plan” or “Project Plan”.

A Software Development Plan (SDP) is all about the Internal Communication within the
Development Team and how it Communicates with rest of the Organization, the Customers, etc.

8.3.1 Gantt Chart

One of the most used tools for project planning is the Gantt chart. The Gantt chart gives an
overview of tasks, subtasks, milestones, resources, etc. in a project.

In Figure 8-2 we see a Gant Chart example created with Microsoft Project.

Microsoft Project - gantt chart example.mpp Q
(3) Bl Edt View Inset Fomat Jooks Project Colsborate Window Help Adoe POF Type:a gomstion for hep
G0 $ N S 9|8 e 5 a8 L)L) B NoGrouw & Q 2k g)lgﬁ <
i 17 |[rasks] ~ | Resowrces ~ | Track ~ | Report -!

Determine a budget

Task Name Duration Start Finish Predecessors | | Oct7,'07 | Oct 14,'07 | Oct 21,'07 | Oct 28, '07 B
SIMITWIT[FIS|S[M[TWITIF[S|SIM[TWITIF[S|S|M[TWITIF]

1| Determineabudget | 1day Tue10/907 Tue 10807)
2 Research Technologees 5 days Wed 104007 Tue 101607 1

3| Select Technology 1 day Wed 1017/07 Wed 101707 2

4 Research Brands 3days Thu10M807 Mon 10722007 3

5| SelectBrand andModel 1day Tue 102307 Tue 10/2307 4

6| CheckOndine Stores 2days Wed 1024007 Thu10/2507 5

7| Checklocal Outlets Sdays Wed 102407 Tue 10530007 5

8 Select Retaier 1 day Wed 10/31,07 Wed 10/3107 786

9 Purchase 1day Thu11A07 Thu11A07 8

-

;1 .

NUM

Figure 8-2: Gant Chart Example — Microsoft Project

It is important that the Project Management is an active part of your software project. The Gantt
Chart should be used through the whole project; it is not something you create in the beginning of
the project and putin a drawer.

In Figure 8-3 we see the recommended way of working with the different project activities.

Part 2: Software Engineering

80 8 Project Management

How to work in the project period

Project Working with Documentation
Management Project Tasks (Report, etc.)
Start
<— §
—>
_ T —)
e
_ - .
e
v A 4 Finish

Important: Work with these activities in parallel!!!

Figure 8-3: Project Work

Always create a Project Plan!

8.4 Meetings

It is necessary to have meetings when planning and creating software, but these meetings should
not be misused.

Below we list some typical meeting needed during the software development project:

e Kickoff and Planning Meetings

e Project Meetings

e Daily Scrum Meetings

e Review Meetings

e Meetings for Planning next Sprint/Iteration

For meetings in general we have the following guidelines:

e The meeting agenda should be clear.

o All meetings should follow the basic structure that is described for that meeting.
e Meetings should start on time, even if some team members are late.

e Meetings should finish on time.

e Each team member should come to the meeting prepared.

Part 2: Software Engineering

81 8 Project Management

Always be prepared before the meetings (otherwise you don’t need to be there)!

8.4.1 Meeting Agenda

A typical meeting agenda could be as follows:
e Project Plan, Gantt Chart (Project Manager)
e Work Items, Overview and Status (Test Manager)
e Demonstration of Applications/Coding (Individual)
e Short Status for each member (Individual)
o What have you done so far?
o What shall be the focus the next weeks?

o Any Technical Challenges/Problems/Issues? (It is very important to get an overview
of the challenges in the project, or else the whole project will be at risk if you don’t
tell about them!)

o Other matters

The meeting should last no longer than 60 minutes.

When you are finished with the meeting, write a short Minutes of Meeting as soon as possible.

8.4.2 Minutes of Meeting

Write a “Minutes of Meeting” (send on e-mail to team members and supervisor the same day!).
The purpose of this is twofold:

* Important decisions or agreements are recorded, so they are not forgotten!

* The second purpose is to record unsolved issues that require follow up action, so-called
action items. Each action item is assigned to one (preferred) or more team members with a
specific deadline for completion.

Always create a Minutes of Meeting!

The Minutes of Meetings should include a table like this:

Task Responsible Deadline

Part 2: Software Engineering

82 8 Project Management

In this way, we can easily get an overview of the tasks agreed in the meeting, which is responsible
for the tasks, and a specific deadline for each task. This task list should be followed up in the next
meeting.

8.5 Agile Project Planning and Tracking

Successful projects often have the following characteristics:

e The needs of the customers drive the project.

e The team creates a high-level plan for delivering the project.

e The team develops the product over several iterations and refines the high-level plan over
time.

e The team has effective tools for adapting to changes that occur.

Figure 8-4 shows the steps involved in Agile Project Planning and Tracking.

Stakeholder Gives Feedback

Daily Cycles
Feedback Ask for
Incorporated Feaedback
e
—
Telling the —
story m—
— —
— * —
Manage the FPlan a Run a Deploy to
backlog Sprint Sprint Stakehaolders

Figure 8-4: Agile Project Planning and Tracking

In Agile Project Planning and Tracking, everything is broken down to so-called iterations, as shown
in Figure 8-5.

Part 2: Software Engineering

83 8 Project Management

— Planning the Project

Tracking the Project

Tracking the Iteration

Planning the [teration
Figure 8-5: Using Iterations in Agile Project Planning and Tracking

The Task board is a key tool in Agile Project Planning and Tracking, see Figure 8-6

Product All
ousdog [TE neauramens Task Board
Sprint Backlog 1 Se!ected T(?day we can use tools !ike TFS, but many
*r Requirements still use a whiteboard with sticky notes
"for one Iteration)
Sprint Sprint

Tasks Not Started | Tasks In Progress Tasks Finished

Create Web Create
Interface Create GUI SCC
J_, Project
Create
Database
Create
UML

-

Figure 8-6: Task board used in Agile Software development

The Task board is used together with the Burndown chart, as shown in Figure 8-7.

Part 2: Software Engineering

84 8 Project Management

Burndown Chart

Actual
Burndown

Tracking the Progress

\deal of the Project

Burndown

(S1nOH) d40oM Sululeway

Sprint
29
1 Z 3 Finished
Days
Figure 8-7: Burndown Chart

A burn down chart is a graphical representation of work left to do versus time. The outstanding
work (or backlog) is often on the vertical axis, with time along the horizontal. That is, it is a run
chart of outstanding work. It is useful for predicting when all the work will be completed.

It is often used in agile software development methodologies such as Scrum. However, burn down
charts can be applied to any project containing measurable progress over time.

Azure DevOps have all these features (Task board, Burndown chart, etc.) builtin.

Azure DevOps is explained in detail in a later chapter.

8.6 Summary

Here are some important keywords for successful project management:
e Software Project Management is important to keep the project on track
o Agile Project Management = less documentation

e Useful tools are in Project Management and Tracking are: Gantt Chart, Task board,
Burndown Chart

e You should always create a Communication Plan

Part 2: Software Engineering

85

8 Project Management

You should always start the project with a Brainstorming session.

Part 2: Software Engineering

9Requirements Engineering

Before you start to implement a software system, you need to understand what the system is
intended to do. This intended functionality is the “Requirements”. The process of creating these
requirements is called Requirement Analysis or Requirement Engineering. It is the process of
understanding what you want and what you need in your software.

Requirements engineering (RE) refers to the process of formulating, documenting and maintaining
software requirements.

The results of the Requirement Analysis or Requirement Engineering process is normally one or
more documents, called the Software Requirement Specification (shorted “SRS”).

The requirements are in some cases created by the customer, at least the overall requirements (it
defines “What” the customers want), while more details are normally created by architects and
developers in the software company that is going to develop the actual software. Here we can
have both “What” and “How” the software shall be designed or implemented.

The main challenges in Requirements Engineering is that the customers most often don’t know
what they want or are not qualified to know what they need.

In general, we can summarize the following:

e Stakeholders don’t know what they want.

e Stakeholders express requirements in their own terms.

e Different stakeholders may have conflicting requirements.

e Organizational and political factors may influence the system requirements.

e The requirements change during the analysis process. New stakeholders may emerge and

the business environment may change.

In Figure 9-1 we see different types of requirements.
Requirements

Requirements

Functional | Non-Functional
Requirements Requirements

‘ User ‘ System

- Requirements | Requirements |

Figure 9-1: Software Requirements

86

87 9 Requirements Engineering

In Figure 9-2 and below we explain the different software requirements categories in more detail.

User System Functional Non-Functional
Requirements Requirements Requirements Requirements
Statements in natural language plus Statements of services the system should provide, how
diagrams of the services the system the system should react to particular inputs and how
provides and its operational the system should behave in particular situations. May
constraints. Written for customers. state what the system should not do.

Constraints on the services or functions offered by

A structured document setting out detailed descriptions of the system such as timing constraints, constraints
the system’s functions, services and operational constraints. on the development process, standards, etc. Often
Defines what should be implemented so may be part of a apply to the system as a whole rather than
contract between client and contractor. individual features or services.

Figure 9-2: Software Requirements Categories Overview

User Requirements

Statements in natural language plus diagrams of the services the system provides and its
operational constraints. Written for customers.

System Requirements

A structured document setting out detailed descriptions of the system’s functions, services and
operational constraints. Defines what should be implemented so may be part of a contract
between client and contractor.

Client managers
System end-users

> Client engineers
Contractor managers
System architects

User
requirements

System end-users
System Client engineers

requirements System architects

Software developers

Figure 9-3: Requirements Users [1]

Functional Requirements

Statements of services the system should provide, how the system should react to particular
inputs and how the system should behave in particular situations.

Part 2: Software Engineering

88 9 Requirements Engineering

May state what the system should not do.

Non-Functional Requirements

Constraints on the services or functions offered by the system such as timing constraints,
constraints on the development process, standards, etc.

They often apply to the system rather than individual features or services.

Since there are different people involved creating and reading the requirements documents, the
requirements are normally split into “High-Level Requirements” and “Detailed Requirements”
(Figure 9-4).

High-Level ' Detailed
Requirements ! Requirements

Figure 9-4: High-Level Requirements vs. Detailed Requirements

High-level requirements are for “business” people, while detailed requirements are for
developers, etc.

9.1 User Requirements

User requirements are statements in natural language plus diagrams of the services the system
provides and its operational constraints. User requirements are written for customers.

9.2 System Requirements

System requirements is setting out detailed descriptions of the system’s functions, services and
operational constraints. They define what should be implemented so may be part of a contract
between client and contractor.

9.3 Functional Requirements

Functional Requirements are:
e Describe functionality or system services.

e Depend on the type of software, expected users and the type of system where the
software is used.

Part 2: Software Engineering

89 9 Requirements Engineering

e Functional user requirements may be high-level statements of what the system should do.

e Functional system requirements should describe the system services in detail.

9.4 Non-Functional Requirements

Non-Functional Requirements are:

* These define system properties and constraints e.g. reliability, response time and storage
requirements. Constraints are 1/O device capability, system representations, etc.

* Process requirements may also be specified using an IDE, programming language or
development method.

* Non-functional requirements may be more critical than functional requirements. If these
are not met, the system may be useless.

9.5 SRS

Software Requirements Specifications (SRS) are:

* The software requirements document is the official statement of what is required of the
system developers.

* Should include both a definition of user requirements and a specification of the system
requirements.

* Itis NOT a design document. As far as possible, it should set of WHAT the system should do
rather than HOW it should do it.

In practice, requirements and design are inseparable. Many don’t separate SRS and SDD (Software
Design Document) documents, but include everything in a Requirements & Design Document.
Such a document could be called “Software Requirements and Design Document” (SRD).

In Figure 9-5 we see some typical contents of such a SRS/SDD document.

Part 2: Software Engineering

90 9 Requirements Engineering

. _ UML
Requirements Analysis Diagrams
Written High-Level
i ig " Diagrams as Figures etc.

Requirements + Descriptions of each

Use Case Document?

System o
Sketches, Flow SRS/SDD D[?:t?:::»(i) J
Charts, etc. Document(s) g

Diagrams as Figures
+ Overall Descriptions and
descriptions for each table

Diagrams as Figures
+ Descriptions of e

Design Sketches
-both System Arcitecture
and GUI mockups

CAD Drawings etc.

Useful when your project involves hardware

Figure 9-5: Typical SRS/SDD Contents

In Figure 9-6 we see the different users involved in the SRS document.

Specify the requirements and
System read them to check that they
customers > meet their needs. Customers
specify changes to the
requirements.
Use the requirements
Managers | document to plan a bid for
the system and to plan the
system development process.
System Use the requirements to
engineers > understand what system is
to be developed.
System test _ | Use the requirements to
engineers *| develop validation tests for
the system.
System Use the requirements to
(e | understand the system and
engineers the relationships between its
parts.

Figure 9-6: Users of SRS [1]

Part 2: Software Engineering

91

9 Requirements Engineering

In Table 9-1 we see an example of what chapters that we can include in a SRS document.

Table 9-1: Example of Table of Contents for the SRS document [1]

Chapter

Description

Preface

This should define the expected readership of the document and
describe its version history, including a rationale for the creation of a
new version and a summary of the changes made in each version.

Introduction

This should describe the need for the system. It should briefly describe
the system’s functions and explain how it will work with other systems.
It should also describe how the system fits into the overall business or
strategic objectives of the organization commissioning the software.

Glossary

This should define the technical terms used in the document. You
should not make assumptions about the experience or expertise of the
reader.

User Requirements
Definition

Here, you describe the services provided for the user. The
nonfunctional system requirements should also be described in this
section. This description may use natural language, diagrams, or other
notations that are understandable to customers. Product and process
standards that must be followed should be specified.

System Architecture

This chapter should present a high-level overview of the anticipated
system architecture, showing the distribution of functions across
system modules. Architectural components that are reused should be
highlighted.

System
Requirements
Specification

This should describe the functional and nonfunctional requirements in
more detail. If necessary, further detail may also be added to the
nonfunctional requirements. Interfaces to other systems may be
defined.

System Models

This might include graphical system models showing the relationships
between the system components and the system and its environment.
Examples of possible models are object models, data-flow models, or
semantic data models.

Part 2: Software Engineering

92 9 Requirements Engineering

System Evolution This should describe the fundamental assumptions on which the
system is based, and any anticipated changes due to hardware
evolution, changing user needs, and so on. This section is useful for
system designers as it may help them avoid design decisions that would
constrain likely future changes to the system.

Appendices These should provide detailed, specific information that is related to
the application being developed; for example, hardware and database
descriptions. Hardware requirements define the minimal and optimal
configurations for the system. Database requirements define the
logical organization of the data used by the system and the
relationships between data.

Index Several indexes to the document may be included. As well as a normal
alphabetic index, there may be an index of diagrams, an index of
functions, and so on.

9.6 Project Estimation

To get an overview of the total cost in a software project is important. The features and
requirements need to be broken down into manageable tasks by the team. Each Tasks then needs
to be estimated (Hours).

9.7 Exercises

1. What is Software Requirements?

2. Requirements vs. Design — What is the main difference?
3. List different types of Requirements

4. What is User Requirements?

5. What is System Requirements?

Part 2: Software Engineering

93 9 Requirements Engineering

6. What is Functional Requirements?

7. What is Non-Functional Requirements?

8. Give some examples of Non-Functional Requirements

9. What is SRS?

10. Mention some Requirements Analysis Problems/Challenges?

Part 2: Software Engineering

10 User eXperience(UX)

Designing and creating the graphical user interface is a very important part of software
development. We have different names for it; User eXperience (UX), Graphical User Interface
(GUI) or Human Machine Interface (HMI).

The GUI design has been in constant change since the first computers and software were created.
In Figure 10-1 we see the difference between Windows 1 and Windows 8.

User eXperience Human Machine Interface

Graphical User Interface

“w J
“y , Today”
esterday’
= =T HS-D0S Executive== = Write - README.DOCE Administrator A
R File Uiew Special [F:ﬁle Edit pSearch o
o ois - aracter aragrap
= "= fhaacrs
. / 4 ggtl:l: Hicrosoft Windows 'xgg\giafr':g,f .
% | caLc W5-06% Executive Internet Store Camera
E 3 i E:‘ﬁg “ Uersion 1.81
Simee® CGA. Copyright @ 1985, Microsoft Corp. JHOUTEE 8RO

b printfrom an ay

== Reversi CGA. ok) his may be prefd
Game Skill CGA. - pnfiguration as it Calendar ‘ Maps SkyDrive ~ Games Video Finance

CITO . ure change the

CLIP! Disk Space Free: 38024K Hion of the WIN.I

c'—aﬁ Hemory Free: Epooler=no will g

COMN e ere——rr—rerrTTaT
CONTROL.EXE ~ EGAMONO.GRB HPLA

COURA.FON EGAMOND .LGO
COURB.FON EHM.AT JOY
COURC.FON EMM.PC

[
AN
'De Contacts Messaging Photos

Windows 8 (2012)
Windows 1 (1985) 2

Figure 10-1: User eXperience — UX

It is important that Documents, GUI, Code, etc. have the same “Look and Feel” — Use Common
Templates, APIs, etc.

In software design, look and feel is a term used in respect of a graphical user interface and
comprises aspects of its design, including elements such as colors, shapes, layout, and typefaces
(the "look"), as well as the behavior of dynamic elements such as buttons, boxes, and menus (the
"feel"). The term can also refer to aspects of an API, mostly to parts of an API that are not related
to its functional properties.

94

95 10 User eXperience(UX)

Look and feel in operating system user interfaces serves two general purposes. First, it provides
branding, helping to identify a set of products from one company. Second, it increases ease of use,
since users will become familiar with how one product functions (looks, reads, etc.) and can
translate their experience to other products with the same look and feel.

It is the “UX Designer” that design the GUI, while the Programmer make sure to implement it in
the proper programming language (Figure 10-2).

»,

©,

N e’/
Software Architect SoftwareTester

Project Manager

UX Designer Programmer

Figure 10-2: UX Designer

10.1 UX Guidelines

Different platforms have different UX and UX guidelines, so it is important to follow these general
guidelines for the different platforms. The GUI is totally different on, e.g., Windows and Mac OS X.

The different platform vendors create their own guidelines that the developers should follow.
For Windows 8 UX Guidelines, see [13].

Figure 10-3 is an example from the Mac OS X UX Guidelines [14].

Part 2: Software Engineering

96 10 User eXperience(UX)

Close, minimiza,

and zoom buttons Proxy icon Window title
a0 « Title Title bar
T ErTrre— T (A ([AR = R =
(a- F": j {4 » 1 [Done | Replace ——— Scope bar
—— Scroller

Figure 10-3: Mac OS X UX Guidelines [14]

10.2 GUI Mockup

Creating so-called GUI mockups are an important part of the process of creating user-friendly GUI.

Mockups and prototypes are not so cleanly distinguished in software and systems engineering,
where mockups are a way of designing user interfaces on paper or in computer images. A software
mockup will thus look like the real thing, but will not do useful work beyond what the user sees. A
software prototype, on the other hand, will look and work just like the real thing. In many cases it
is best to design or prototype the user interface before source code is written or hardware is built,
to avoid having to go back and make expensive changes [15].

In Figure 10-4 we see an example of a GUI Mockup.

Part 2: Software Engineering

97 10 User eXperience(UX)

my very own address book
QA0 X Gor) @)
C_ D O ™rs.
John Doe M M
Jane Doe First Name] John I
John Dow
John Dunn Last Name | Dow I
Birthdate 0z/0811977_| B
Job title passionate programmer I
Address =[City ¢ [Regon ¢ | Postcode ¢[Type =
2843 Sherman Ave Camden CA 08105-442 home
35746 Haley St MNewark CA 94560-1161 work
Add] [peete] | Telephone /| Address /{Emai /
L4

Figure 10-4: GUI Mockup Example

10.3 Creativity

Be creative - Think outside the box!

“Thinking outside the box” is a metaphor that means to think differently, unconventionally, or
from a new perspective.

Part 2: Software Engineering

11 UML

11.1 Introduction

UML is a modeling language used in software engineering. It is very popular within OOA, 00D,
OOP. UML was developed in the 1990s and adapted as an ISO standard in 2000. UML 2.2 has 14

different types of diagrams.

Diagram
[|
Structure Behaviour
Diagram Diagram
PaN Pay
I I l [
Class Component Object Activity Use Case
Diagram Diagram Diagram Diagram Diagram
Profile Cs%mgggirtg Deployment Package Interaction Msatgrtni%e
Diagram Diagram Diagram Diagram Diagram Diagram

PN

Sequence || Communication|| Interaction|| Timing
: Biacrara Qverview Di
Diagram g Diagram iagram

Figure 11-1: UML Diagrams
We have 2 main categories of diagrams:

e Structure Diagrams
e Behavior Diagrams
o Interaction Diagrams (sub category of Behavior Diagrams)

The diagrams available in UML are:

e C(Class Diagram

e Component Diagram
e Deployment Diagram
e Object Diagram

e Package Diagram

e Activity Diagram

98

99 11 UML

e Sequence Diagram

e Communication Diagram

e Use Case Diagram

e State Machine Diagram

e Composite Structure Diagram
e Interaction Overview Diagram

e Timing Diagram
Why use UML?

e Design:
o Forward Design: doing UML before coding. Makes it easier to create the code ina
structured manner
o Backward Design: doing UML after coding as documentation

o Some tools can auto-generate Code from UML diagrams

11.2 UML Software

There exist hundreds of different software for creating UML diagrams, here | mention just a few:

e Visio
e Enterprise Architect
e Visual Studio (Enterprise)

11.2.1 Visual Studio Enterprise

With the Visual Studio Enterprise edition, we can create some of the most used UML diagrams,

see Figure 11-2.

These diagrams are available from the “Architecture” menu in Visual Studio.

Part 2: Software Engineering

100 11 UML

' ™y
e S

Templates:

E—E UML Class Diagram

Description

?DT UML Sequence Diagram A blank UML class diagram
-

w UML Use Case Diagram

ﬁ UML Activity Diagram
@E: UML Component Diagram

{EI@ Layer Diagram

&% Directed Graph Document

Mame: UMLClassDiagraml.classdiagram

Add to modeling project: Create a new modeling project... -

| oK | ’ Cancel

Figure 11-2: Create UML diagrams with Visual Studio Ultimate

11.3 Use Case

One of the most used UML diagrams is the Use Case Diagram.

In Figure 11-3 we see a Use Case example.

Part 2: Software Engineering

101 11 UML

Register Export
patient % statistics
f 3 View Manager
Medical receptionist personal info.
report

% View record i
Nurse
Doctor
Edit record

Setup
consultation

Figure 11-3: Use Case example

11.4 Sequence Diagram

In Figure 11-4 we see an example of a Sequence Diagram.

P : Pasientinfo D: A : Autorisasjor
MHCPMS-DB
- Medisinsk
saksbtzl'\andler

1: SePasientinfo (PID)

2: Report (Info, PID, UID)

3. Autorisasjon(info, UID)

4: Autorisasjon “

Alt

Autorisasjon ok

5: Pasientinfo

Autorisasjon feilet
5 Feilmelding (Ingen aksess
[|
L

~—

[S —

Figure 11-4 Sequence Diagram Example

Part 2: Software Engineering

102 11 UML

11.5 Class Diagram

Figure 11-5 shows a Class Diagram Example.

Person Address
Name S!reet
Phone Number 0.1 lives at 1 City
Email Address State
Postal Code
Purchase Parking Pass Country
? Validate
Output As Label
Student Professor
Student Number Salary

Average Mark

Is Eligible To Enroll
Get Seminars Taken

Figure 11-5: Class Diagram Example

11.6 Creating UML Diagrams

There are many types of UML diagrams, so you need to focus in some of the diagram types which
are relevant for your project.

| will focus on the UML diagrams mentioned above, namely Use Case Diagrams, Sequence
Diagrams and Class Diagrams.

Requirements Analysis Phase (WHAT):
* Use Case Diagrams

Design Phase (HOW):
* Sequence Diagrams (Typically one Sequence diagram for each Use Case)
* Class Diagrams (just one Class diagram in total)

See Figure 11-6 for the recommended approach when writing UML diagrams.

Part 2: Software Engineering

103 11 UML

Creating UML - A practical Approach

A graphical/visual representation

\L . of the Requirements
P ~ I_/"I - ~ Interactions.betwe.en a
‘ Written ‘ .“ U Se Ca Se system and its environment
F v WHAT
Requirements i
‘ Create Use Cases from your Dlagrams

written Requirements WHAT the system shall do

f_l-\ o
= __ You get the Class Names from h 4 DESIGN,_ (3)
‘ Class ‘ the different Sequence Diagrams‘ Sequence

< HOW
Diagram ' How | Diagrams

Create one Class Diagram that gives an overview of all Typically create one Sequence
your classes and the relationship between them Diagram for each Use Case

Figure 11-6: How to create UML diagrams

Finally, include your UML diagrams and descriptions of them in the SRS/SDD document(s), see
Figure 11-7.

UML

S Requirements Analysis
d Y Diagrams

Written High-Level
Requirements

Diagrams as Figures etc.

+ Descriptions of each

Use Case Document?

| o | S RS/S DD Database
Sketches, Flow _
Charts, etc. Document(s) Diagram(s)

Diagrams as Figures
+ Overall Descriptions and
descriptions for each table

Diagrams as Figures
+ Descriptions of e

Design Sketches
-both System Arcitecture
and GUI mockups

CAD Drawings etc.

Useful when your project involves hardware

Figure 11-7: UML documentation

11.7 UML in Agile/Scrum?

Part 2: Software Engineering

104 11 UML

UML s not a part of the Agile/Scrum methodology, because they use another philosophy with
less focus on documentation.

Use Case and Scrum (Agile):
* The Team works closely together with the Product Owner
* Less need for detailed descriptions and requirements

* Agile/Scrum uses User Stories instead (which could be considered as a light version of Use
Case)

* The User Stories are the base for the Product Backlog and the Sprint Backlog

11.8 Summary

You should create Design and Specifications (including UML) before you start Coding. UML
diagrams is a general method/standard to do just that. But UML can also be used to document
your code afterwards (so-called Reverse Engineering).

UML makes it easier to create structured code and an effective way to document your code
properly. UML should also be part of the code refactoring process and UML should be as part of
the continuous code improvements process. Note! If you update the code, make sure to update
the UML and vice versa!

Make sure that you code reflects the UML design regarding classes, etc. If you update your code,
you need to update the UML diagrams and vice versa.

It is important that we have a working software at all times (so it can be reviewed, tested, etc.)!

11.9 Exercises

1. Whatis UML?
2. Give example of some types of UML diagrams (in total we have 14 different types)?
3. Give examples of software used to create UML diagrams

4. List the 2 different categories of UML diagrams we have

Part 2: Software Engineering

105 11 UML

5. Create a Class Diagram for a typical School including Classes Teacher, Student, Course, Grade,
etc.

Part 2: Software Engineering

12 Software Implementation

The goal of most software engineering projects is to produce a working program.

The act of transforming the detailed design into a valid program in some programming language,
together with all its supporting activities is referred to as implementation.

Most of the text in this chapter is taken from [16].

The implementation phase involves more than just writing code. Code also needs to be tested and
debugged as well as compiled and built into a complete executable product (Figure 12-1).

We usually need to use a Source Code Control (SCC) tool to keep track of different versions of the
code.

Problem
statement

..... > Code Compile —F

Y

Problem Problem

Debug

Figure 12-1: Software Implementation [16]

In many cases the detailed design is not done explicitly (in the Design Phase) but is left as part of
the implementation. Doing the detailed design as part of the implementation is usually faster, but
it may result in a less cohesive and less organized design, because the detailed design of each
module will usually be done by a different person.

In small projects, the detailed design is usually left as part of the implementation. In larger
projects, or when the programmers are inexperienced, the detailed design will be done by a
separate person.

Here are some keywords for good implementation:

e Readability: The code can be easily read and understood by other programmers.

e Maintainability: The code can be easily modified and maintained. Note that this is related
to readability, but it is not the same; for example, this involves the use of e.g., Hungarian
notation, in which variable names include abbreviations for the type of variable.

106

107

12 Software Implementation

Performance: All other things being equal, the implementation should produce code that
performs as fast as possible.

Traceability: All code elements should correspond to a design element. Code can be traced
back to design (and design to requirements).

Correctness: The implementation should do what it is intended to do (as defined in the
requirements and detailed design).

Completeness: All the system requirements are met.

In this chapter, we will go through the following topics regarding implementation:

In this chapter, we will discuss the following:

Programming Style and Coding Guidelines
Comments

Debugging

Code Review

Refactorization

12.1 Programming Style & Coding Guidelines

Almost all software development organizations have some sort of coding guidelines. These

guidelines usually specify issues such as naming, indentation, and commenting styles, etc.

It is strongly recommended that you be consistent in your notation to avoid confusion when

others are debugging or maintaining your code later. Especially in large software projects there

are usually some programming conventions. These conventions may seem to be of little value at

first, but they may become extremely helpful during the maintenance of the code.

Here are some recommendations:

Naming: This refers to choosing names for classes, methods, variables, and other
programming entities.

Separating words and capitalization: Many times, a name will be composed of more than
one word. In human languages, we use spaces to separate words, but most programming
languages will not allow us to do so. (do_something, doSomething, DoSomething)
Indentation and spacing: Indentation refers to adding horizontal spaces before some lines
to better reflect the structure of the code. Spacing refers to both spaces and blank lines
inserted in the code.

Function/method size: Many studies have shown that large functions or methods are
statistically more error-prone than smaller ones.

Part 2: Software Engineering

108 12 Software Implementation

* File-naming issues: Having a standard for specifying how to name the files, which files to
generate for each module, and how to locate a given file from a module is very
advantageous.

* Particular programming constructs: Different programming languages support different
features; although they usually have good reasons to include certain features, there are
many that can be misused and need special precautions.

12.1.1 Naming Convention

We have different naming convention/notation such as:

¢ Camel notation
¢ Pascal notation
* Hungarian notation

Camel Notation

For variables and parameters/arguments
Examples: “myCar”, “backColor”

Pascal Notation

For classes, methods and properties
Examples: “ShowCarColor”

Hungarian Notation

For controls on your user interface we either use “Pascal notation” or “Hungarian notation”, but
stick to one of them!

Examples: “txtName”, “IbIName”
Acronyms

Examples: “DBRate”, “ioChannel”, “XmlIWriter”, “htmlIReader”

12.2 Comments

Comments are very important and can significantly aid or hurt readability and maintainability.
There are two main problems with comments:

e they may distract from the actual code and make the program more difficult to read and

Part 2: Software Engineering

109

12 Software Implementation

they may be wrong.

DO YOU POST
YOUR CODE ON
FACEBOOK?

geek & poke

DIDN'T YOoU
SAY TO ME IT
NEEDS MORE
COMMENTS?

CODE COMMENTING MADE EASY

[http://geek-and-poke.com]

We may classify comments into 6 different types:

1.

2.

5.

6.

Repeat of the code
Explanation of the code
Marker in the code

Summary of the Code
Description of the code intent

External references

These are explained below:

Repeat of the code

Part 2: Software Engineering

110 12 Software Implementation

o These kinds of comments tend to be done by novice programmers and should be
avoided.
Bad Example:
// increment i by one
i++;

e Explanation of the code

o Sometimes, when the code is complex, programmers are tempted to explain what
the code does in human language.

o Inalmost every case, if the code is so complex that it requires an explanation, then
it should be rewritten.

1. Marker in the code

— Itis common practice to put markers in the code to indicate incomplete items,
opportunities for improvement, and other similar information.

— We recommend using a consistent notation for these markers and eliminating all of
them before the code is in production.

— Sometimes programmers put markers in the code to keep track of changes and who
made them. We believe that information is better tracked with version
management software and recommend doing so.

3. Summary of the code

— Comments that summarize what the code does, rather than just repeating it, are
very helpful in understanding the code, but they need to be kept up to date.

— Itisimportant to ensure that these comments are summarizing the code, not just
repeating or explaining it.

— In many cases, the code that is being summarized can be abstracted into its own
function, which, if named correctly, will eliminate the need for the comment.

4. Description of the code intent

— These are the most useful kinds of comments; they describe what the code is
supposed to do rather than what it does.

— These are the only kinds of comments that override the code. If the code does not
fulfill its intent, then the code is wrong.

5. External references

Part 2: Software Engineering

111 12 Software Implementation

— These are comments that link the code to external entities, usually books or other
programs.

— Many times, these can be viewed as a kind of intent statement, as in, “This function
implements the XYZ algorithm, as explained in . . .,” but we believe such comments
require special attention.

— There may also be external prerequisites for the code, such as the existence of
initializing data in the database tables.

The trade-off that comments imply should be recognized. Comments can help clarify code and
relate it to other sources, but they also represent some level of duplication of the code.

6. Effortisinvestedin their creation and, above all, in their maintenance.

7. Acomment that does not correspond to the actual code that it accompanies can cause
errors that are very hard to find and correct.

8. Another danger comments present is that they can be used to justify bad coding practices.
Many times, programmers will be tempted to produce code that is too complicated or too
hard to maintain, and add comments to it, rather than rewrite it to good standards.

9. Infact, many experts recommend avoiding comments completely, and produce what is
called “self-documented code” —that is, code that is so well written that it does not need
any documentation.

10. Comments have their place, especially in the form of describing the programmer’s intent.

12.3 Debugging

Debugging is about different techniques for finding and fixing bugs (errors that make your code
not work as expected) in your code.

1. Iltis difficult to write code without errors (bugs), but e.g., Visual Studio and other tools
have powerful Debugging functionality (break-points, etc.)

2. The Compiler will also find syntax errors, etc.

3. For more “advanced” bugs other methods are required (Unit Testing, Integration Testing,
Regression Testing, Acceptance Testing, etc.).

4. The focus here will be on these methods, while Debugging is something you learned in
Programming courses.

Part 2: Software Engineering

112 12 Software Implementation

In debugging we have 4 phases:

Stabilization/Reproduction

* The purpose of this phase is to be able to reproduce the error on a configuration,
and to find out the conditions that led to the error by constructing a minimal test
case

¢ Localization

* The process of localization involves finding the sections of the code that led to the
error. This is usually the hardest part, although, if the stabilization phase produces a
very simple test case, it may make the problem obvious.

* Correction

* The process of correction involves changing the code to fix the errors. Hopefully, if
you understand what caused the error, you have a good chance of fixing the
problem.

¢ Verification

* The process of verification involves making sure the error is fixed, and no other
errors were introduced with the changes in the code. Many times, a change in the
code will not fix the error or may introduce new errors.

12.4 Code Review

We all are human beings. You may do some mistakes irrespective of your experiencein a
technology or module. If you just review your code by a second eye, those mistakes might have
caught at that time only. This way you can reduce the no. of bugs reported by the testers or end
users (Figure 12-2).

If you are working in a geographically distributed team, your coding conventions may differ and if
you have some strict coding guidelines, this code review process will make it possible to recheck
the standards in the code that you have written.

1. There are some possibilities of repetitive code block which can be caught during a code
review process. Refactoring can be done based on that.

2. Unused code blocks, performance metrics etc. are some additional check points of doing a
review.

3. Ifyou are new to development, this code review process will help you to find out your
mistakes and help you to improve them. This is a perfect knowledge sharing mechanism.

Part 2: Software Engineering

113 12 Software Implementation

4. Find out the defects and correct them at the beginning before it commits to the source
control system.

Why Do Reviews?

Cost per defects

[SDLC >
: : " .

Figure 12-2: Why you should do reviews

RECENTLY DURING CODE REVIEW

agod § noab

BLAME ME!
I COPIED THE
CODE FROM
JiM

SINGLE SOURCE PRINCIPLE

[http://geek-and-poke.com]

Part 2: Software Engineering

114 12 Software Implementation

Better code always starts with review process!
Here are some topics that should be checked during the Code Review process [12]:
* Readability: The code can be easily read and understood by other programmers.

* Maintainability: The code can be easily modified and maintained. Note that this is related
to readability, but it is not the same; for example, this involves the use of e.g., Hungarian
notation, in which variable names include abbreviations for the type of variable.

* Performance: All other things being equal, the implementation should produce code that
performs as fast as possible.

* Traceability: All code elements should correspond to a design element. Code can be traced
back to design (and design to requirements).

* Correctness: The implementation should do what it is intended to do (as defined in the
requirements and detailed design).

* Completeness: All the system requirements are met.

12.5 Refactoring

Even when using best practices and making a conscious effort to produce high-quality software, it
is highly unlikely that you will consistently produce programs that cannot be improved.

Refactoring is defined as
* the activity of improving your code style without altering its behavior

* achange made to the internal structure of software to make it easier to understand and
cheaper to modify without changing its observable behavior

Do you need to refactor your code? — here are some symptoms:
* Coding Style and Name Conventions not followed
* Proper Commenting not followed
* Duplicated code (clearly a waste)

* Long method (excessively large or long methods perhaps should be subdivided into more
cohesive ones)

* Large class (same problem as long method)

* Switch statements (in object-oriented code, switch statements can in most cases be
replaced with polymorphism, making the code clearer)

Part 2: Software Engineering

115 12 Software Implementation

* Feature envy, in which a method tends to use more of an object from a class different to

the one it belongs
* Inappropriate intimacy, in which a class refers too much to private parts of other classes

Any of these symptoms (and more) will indicate that your code can be improved. You can use
refactoring to help you deal with these problems.

You should Refactoring your continuously and especially after Code Reviews.

Part 2: Software Engineering

13 Testing

13.1 Introduction

Different people have come up with various definitions for Software Testing, but generally, the

goal with testing is:

e To ensure that the software meets the agreed requirements and design
e The application works as expected

e The application doesn’t contain serious bugs

e Meets its intended use as per user expectations

Testing can be performed on different levels and by different persons. Testing is a very important
part of software development. About 50% of the software development is about testing your

software.

Since modern software has become very complex, testing has become a very important part of
software development (see Figure 13-1).

Client

Browsers

< Different Platforms:
Android, iOS, Windows
8/Windows Phone, etc.

Mobile
App L Presentation Tier J

Client
uslI

}\ Presentation Tier ‘

— o - PISSqDfatign Tiers. B e
Firewall - s >
' Presentation Tier | & —— J Web Server Local
/ eb Service :
ASP.NET Web Forms (o Network
! AP
Business Tier |
' Logic Tier = .
[\ Data Access Tier J Te S't' N g IS

| eg,ADO, ADONET CoOm) plex 1

-> Systematic

Database
% Server Datapese Approach
1 needed!

Microsofts </~ Stored Procedures]
SQL Server : Tables Views | Data Tier

Figure 13-1: Modern Software Testing has become very complex

116

117 13 Testing

Since testing of advanced software systems is quite complex, we need a systematic approach to
testing that involves different levels of testing (see Figure 13-2).

Figure 13-2: Systematic Testing

Since Software Development today involves different platforms, different devices, network,
servers and clients, etc., it has become very complex to test it. Today we have not only ordinary
Desktop Apps, we have Web Apps, Mobile Apps, Apps for TVs, etc.

The software we create is a layer between the user of the software and the hardware and the
operating system (Figure 13-3).

Part 2: Software Engineering

118 13 Testing

Who are going to use the
U ser software?
How are they going to
{} use it?
~ s Desktop, Web, Mobile?
Application . =

v

=
=
Windows, OS X, Linux,

Operating System android, i0s, etc.

]
= A
PC, Mac, Smartphone,
H d rd ware Tablet, SmartTV, etc.

>\

Software Testing

Infrastructure, Network,
Internet, Servers, etc.

Figure 13-3: Components involved in Software Development & Testing

If we find bugs at the earlier stage, the cost to fix this will be less and thus it will reduce the overall
cost of the application (Figure 13-4).

Why Find Bugs early?

Cost per defects

Figure 13-4: Find Bugs at an early stage

Figure 13-5 illustrates the necessary steps involved in testing.

Part 2: Software Engineering

119 13 Testing

i D t Test
Planning Tests | Perform Tests S
‘ Results

Figure 13-5: Software Testing

Testing is intended to show that a program does what it is intended to do and to discover program
defects before it is put into use. When you test software, you execute a program using artificial
data. You check for the presence of errors NOT their absence.

Testing is part of a more general verification and validation process, which also includes static
validation techniques.

What is the purpose with Testing?

The main purpose with testing is as follows:

* To demonstrate to the developer and the customer that the software meets its
requirements.

* For custom software, this means that there should be at least one test for every
requirement in the requirements document.

* For generic software products, it means that there should be tests for all of the
system features, plus combinations of these features, that will be incorporated in
the product release.

* To discover situations in which the behavior of the software is incorrect, undesirable or
does not conform to its specification.

* This means undesirable system behavior such as system crashes, unwanted
interactions with other systems, incorrect computations and data corruption.

A primary purpose of testing is to detect software failures so that defects may be discovered and
corrected.

If we summarize why we do Testing:

* Finding Bugs in the Software before it is released to the Customer
* Finding unwanted system behaviors
* Verify/Validate that the Software works as expected (according to the Specifications)

Part 2: Software Engineering

120 13 Testing

* Find bugs as soon as possible!

It is commonly believed that the earlier a defect is found the cheaper it is to fix it.

There are different steps involved in the software testing process.
The steps are as follows:

e Design Test Cases

e Prepare Test Data

e Run the Software with the necessary Test Data
e Compare the results with the Test Cases

The final output of this process is a Test Report.

Basically, we do the following: Planning the Test, then we execute the Tests, finally we document
the Test results.

Documents used in testing and created in the test process:

e SRS —Software Requirements Specifications: A document stating what at application
must accomplish. The documents is the basic for the test plan, etc.

e SDD - Software Design Document: A document describing the design of a software
application. The documents is the basic for the test plan, etc.

e STP - Software Test Plan: Documentation stating what parts of an application will be
tested, and the schedule of when the testing is to be performed

e STD - Software Test Documentation: Introduction, Test Plan, Test Design, Test Cases, Test
procedures, Test Log, ..., Summary

We have the following stages in testing:

1. Development testing, where the system is tested during development to discover bugs
and defects. Development testing includes all testing activities that are carried out by the
team developing the system.

2. Release testing, where a separate testing team test a complete version of the system
before it is released to users.

3. User testing, where users or potential users of a system test the system in their own
environment.

Development testing: Development testing is the responsibility of the software development
team. A separate team should be responsible for testing a system before it is released to

customers.

Part 2: Software Engineering

121 13 Testing

Release testing: Release testing is the process of testing a release of a system that is intended for
use outside of the development team.

The primary goal of the release testing process is to convince the supplier of the system that it is
good enough for use. Release testing is usually a black-box testing process where tests are only
derived from the system specification.

User testing: We have different types of user testing:

e Alpha testing
o Users of the software work with the development team to test the software at the
developer’s site.
e Betatesting
o Arelease of the software is made available to users to allow them to experiment
and to raise problems that they discover with the system developers.
e Acceptance testing
o Customers test a system to decide whether it is ready to be accepted from the
system developers and deployed in the customer environment. Primarily for
custom systems.

13.1.1 Test Levels

In Figure 13-6 we see different test levels.

Levels of Testing
Unit Testing: Test each parts
*/ ind;penge:tly ar;cd isola?:e:

/ ‘:’_) Regression Testing:

Int tion Testing: Mak Test that it still works
niegraton lesqang: aKe sure after a change in the

that different pieces work code
together. Test the Interfaces
between the different pieces.
Interaction with other systems
(Hardware, OS, etc.)

System Testing: Test the whole system

Figure 13-6: Levels of Testing

Part 2: Software Engineering

122

13 Testing

Short overview of the different Test levels in Figure 13-6 (more details later):

Unit Tests are written by the Developers as part of the Programming. Each part is
developed, and Unit tested separately (Every Class and Method in the code)

Regression testing is testing the system to check that changes have not “broken”
previously working code. Both Manually & Automatically (Re-run Unit Tests)

Integration testing means the system is put together and tested to make sure everything
works together.

System or validation testing is Black-box Tests that validate the entire system against its
requirements, i.e., checking that a software system meets the specifications

Acceptance Testing: The Customer needs to test and approve the software before he can
take it into use. We have 2 types: FAT (Factory Acceptance Testing) and SAT (Site
Acceptance Testing).

13.1.2 Bug Tracking

A software bug is an error, flaw, failure, or fault in a computer program or system that produces

anincorrect or unexpected result, or causes it to behave in unintended ways

They found a bug (a moth) inside a computer in 1947 that made the program not behaving as

expected. This was the “first” real bug.

13.1.3 Software versioning

Software versioning is used to separate different version of the same software, both before it has

been released and for subsequent releases. See example in Figure 13-7.

Before the software is released:

Alpha Release(s)

Beta Release(s)

RC - Release Candidate(s)

RTM — Release To Manufacturing

Maintenance (after the software is released):

Patches (small fixes)
SP - Service Packs
(lots of small fixe and patches bundle together)

Start Planning next release

Part 2: Software Engineering

123 13 Testing

Eeta wersion

Figure 13-7: Software versioning

Software testing should be performed during the whole Software Development Life Cycle (SDLC)
as shown in Figure 13-8.

Part 2: Software Engineering

13 Testing

124
Testing
. . Code .
Requirements Development & Coding . Final
. reeze
& Design Delivery
g O @ @ S

M
=] = m
§ Eﬂ:- E 2 E g:
Continuous Testing in the whole SDLC! g

In larger companies and Software Systems they typically creates Daily (nightly) Builds, meaning the system is
always ready and available for testing.

Testin Testing Testing Testing
— @ @ @ @—

Increased Increased Increased Increased
Focus Focus Focus Focus
Test Focus: Requirements Reqm.remetnts & Functionality So.ft.ware without
Functionality Critical Bugs

You can never find all Bugs!
Agile/Scrum: Periodically Iterations/Sprint every 14-30 days Released Software do have Bugs!

Figure 13-8: Testing during the Software Development Life Cycle (SDLC)

Sooner or later you have to say enough is enough and release version 1.0 (see Figure 13-9).

Software Finished
A

“100%" =
:I— Details, small adjustments, etc.

“90%" - The last 10% takes a lot of time!!!

Sooner or later you have to say enough is
enough and release version 1.0.

One must define within the development
company, development team or in dialogue
with the customer what is defined as "good
enough". Software will never be 100%
complete or error-free!

Time

Figure 13-9: When is the Software Finished?

Part 2: Software Engineering

125 13 Testing

One must define within the development company, development team or in dialogue with the

customer what is defined as "good enough".

Software will never be 100% complete or error-free (see Figure 13-10)!

Reso\-“ces.'

order ¥©

When should you stop Testing?
(depends on Time, Budget, etc.)

In the beginning it it easy to

Number of Bugs
find bugs with few resources

Critical Point Time

Figure 13-10: When are you Finished with Testing?

13.2 Test Categories

We can divide testing into 2 different categories, which is:

e Black-box
e White-box Testing

13.2.1 Black-box Testing

Black-box testing is a method of software testing that examines the functionality of an application
(what the software does) without going inside the internal structure (White-box Testing).

You need no knowledge of how the system is created. Black-box testing can be done by a person
who only know what the software is supposed to do. You may compare to driving a car —you don’t
need to know how it is built to test it.

Part 2: Software Engineering

126 13 Testing

13.2.2 White-box Testing

In White-box Testing you need to have knowledge of how (Design and Implementation) the
system is built. White-box Testing is also called “Glass-box testing”.

In Figure 13-11 we see how White-box testing is working.

Analyze Code & Identify Tests

Validate Output
Step 1
|nput \ ‘ ’A ‘
Software
= O\ '
©-=
&=
- . Step 3
Step 2 o

Figure 13-11: White-box Testing

13.3 Test Levels

As mention earlier, we have different Levels of Testing (see Figure 13-12).

e Unit Testing

e Regression Testing
e Integration Testing
e System Testing

e Acceptance Testing

These are explained more in detail below.

Part 2: Software Engineering

127 13 Testing

Start Requirements & Design

Unit Testing

!

Regression Testing

y ST

Integration Testing

!

System Testing

oot
| !

Finish Acceptance Testing ‘

F-

Figure 13-12: Software Test Levels
Short explanations of these Test Levels:

e Unit Tests are written by the Developers as part of the Programming. Each part is
developed, and Unit tested separately (Every Class and Method in the code)

e Regression testing is testing the system to check that changes have not “broken”
previously working code. Both Manually & Automatically (Re-run Unit Tests)

e Integration testing means the system is put together and tested to make sure everything
works together.

e System testing is typically Black-box Tests that validate the entire system against its
requirements, i.e., Checking that a software system meets the specifications

e Acceptance Testing: The Customer needs to test and approve the software before he can
take it into use. FAT/SAT.

Part 2: Software Engineering

128 13 Testing

13.3.1 Unit Testing

Unit Testing (or component testing) refers to tests that verify the functionality of a specific section
of code, usually at the function level. In an object-oriented environment, this is usually at the class
and methods level.

Unit Tests are written by the developers as part of the programming. They are automatically
executed by the system, e.g., Visual Studio and Azure DevOps have built-in functionality for Unit
Testing.

Sometimes the Unit Tests are written before you start programming, so-called Test-Driven
Development (TDD).

Why do you

multiply the
percentage by ' [}
e .16772888172? .

"e,

oxod g »oeb

TDD

Since Unit testing are part of the development process, so-called Unit Tests Framework are usually
integrated with the IDE.

Unit Tests Frameworks:

* Visual Studio Unit Test Framework. Unit Tests are built into Visual Studio (no additional
installation needed)

Part 2: Software Engineering

129 13 Testing

* JUnit (Java)
e JUnitis a unit testing framework for the Java programming language.
« NUnit (.NET)

* NUnitis an open source unit testing framework for Microsoft .NET. It serves the
same purpose as JUnit does in the Java world

* PHPUnit (PHP)
* LabVIEW Unit Test Framework Toolkit
* etc

Unit Testing in Visual Studio:

Visual Studio have built-in features for Unit Testing. In the Solution Explorer you just add a “Test
Project” as part of your code (see Figure 13-13).

Add New Project ?
b Recent NET Framework4.5 - Sort by: | Default -] = Search Installed Templates (Ctrl+E s
4 Installed e Type: Visual C#
4 Visual C# A project that contains unit tests.
Windows Store
Windows
b Web
Cloud
Reporting
Test
Workflow
TypeScript
b Other Languages
b Other Project Types
b Online
Click here to go online and find templates,
Name: UnitTestProject]
Location: C\Work\Development\TFS\Development\Unit Tests\Bank - Browse...

Figure 13-13: Unit Test Project in Visual Studio
In Figure 13-14 we see an example of how you create Unit Tests in Visual Studio and C#.

For Test classes, you need to use [TestClass] and for Test Methods you need to use [TestMethod].
You also need to add a reference to the code under test (select “Add Reference” in the Solution
Explorer and include “using <namespace>") in your code.

Part 2: Software Engineering

130 13 Testing

using System;
using Microsoft.VisualStudio.TestTools.UnitTesting;

using BankAccountNS; < - Make sure to add reference to

namespace BankTest the code under test

{
[TestClass] # , Note!
public class BankAccountTests
{
[TestMethod]
public void TestMethod1()
{
}
}
}

Figure 13-14: Unit Test Principle in Visual Studio and C#

The basic concept in Unit Testing is to compare the results when running the Methods with some
Input Data (“Actual”) with some Known Results (“Expected”).

Example:

Assert.AreEqual (expected, actual, 0.001,”Test failed because...");

Unit Tests — Best Practice:
* A Unit Test must only do one thing
* Unit Test must run independently
* Unit Tests must not be depending on the environment
* Test Functionality rather than implementation
* Test public behavior; private behavior relates to implementation details
* Avoid testing Ul components
* Unit Tests must be easy to read and understand

e Create rules that make sure you need to run Unit Tests (and they need to pass) before you
can Check-in your code in the Source Code Control System

13.3.2 Regression Testing

Regression testing focuses on finding defects after a major code change has occurred. Specifically,
it seeks to uncover software regressions, or old bugs that have come back.

Part 2: Software Engineering

131 13 Testing

1. Regression testing is testing the system to check that changes have not “broken”
previously working code.

2. Ina manual testing process, regression testing is expensive but, with automated testing, it
is simple and straightforward. All tests are rerun every time a change is made to the
program.

3. Tests must run “successfully” before the change is committed.

13.3.3 Integration Testing

Integration testing verifies the interfaces between components against a software design.

13.3.4 System Testing/Validation Testing

System Testing follows Integration Testing. It consists of Black-box Tests that validate the entire
system against its requirements. System Testing is about checking that a software system
meets specifications and that it fulfills its intended purpose. System Testing is often executed by
an independent group (QA group). QA — Quality Assurance.

Since system tests make sure the requirements are fulfilled, they must systematically validate each
requirement in the SRS (Software Requirements Specification).

13.3.5 Acceptance Testing

Customers test a system to decide whether it is ready to be accepted from the system developers
and deployed in the customer environment. It is primarily for custom systems.

In Figure 13-15 we see a typical acceptance test process.

» Test »| lest > Tosts 5 Test | Testing
criteria plan I results report
Y
Define Plan Derive Run Negotiate Accept or
acceptance acceptance acceptance acceptance test results reject
criteria testing tests tests system

Figure 13-15: Acceptance Testing
The steps are:

e Define acceptance criteria
e Plan acceptance testing

e Derive acceptance tests

e Run acceptance tests

Part 2: Software Engineering

132 13 Testing

e Negotiate test results
e Reject/accept system

We have 2 main types of Acceptance Testing:

e FAT — Factory Acceptance Testing
e SAT —Site Acceptance Testing

FAT — Factory Acceptance Testing is usually performed in the Test Environment at the software
company.

SAT —Site Acceptance Testing is performed at the Customer in the actual Production Environment.
This is the final step to determine if the requirements of a specification or contract are met.

If the test is accepted, the software is officially handed over to the customer.

Note! Other terms and definitions are used as well in different literature.

13.4 Test Documentation

In Figure 13-16 we see the steps involved in the software testing process.

Software Test Plan (STP)

- ‘ (D t
i T om0

T o Software Test

TR Documentation
(STD)

Software Design Document (SDD)
Software Requirements Specifications (SRS)

Figure 13-16: The Software Testing Process

Documents involved:

e SRS —Software Requirements Specifications: A document stating what at application must
accomplish

Part 2: Software Engineering

133 13 Testing

e SDD - Software Design Document: A document describing the design of a software
application

e STP - Software Test Plan: Documentation stating what parts of an application will be
tested, and the schedule of when the testing is to be performed

e STD - Software Test Documentation: Introduction, Test Plan, Test Design, Test Cases, Test
procedures, Test Log, ..., Summary

In addition to write different documents in your test phase, you should have a Bug Tracking
System. With a Bug Tracking System, you can easily store all your bugs in a database system, set
priorities, use search to find bugs, use different statistics, etc. More about Bug Tracking Systems
below.

13.4.1 Test Planning

Test planning involves scheduling and estimating the system testing process, establishing process
standards and describing the tests that should be carried out. As well as helping managers allocate
resources and estimate testing schedules, test plans are intended for software engineers involved
in designing and carrying out system tests. They help technical staff get an overall picture of the
system tests and place their own work in this context.

As well as setting out the testing schedule and procedures, the test plan defines the hardware and
software resources that are required. Test plans are not a static document but evolve during the
development process. Test plans change because of delays at other stages in the development
process. Test planning is particularly important in large software system development. For small
and medium-sized systems, a less formal test plan may be used, but there is still a need for a
formal document to support the planning of the testing process.

A Software Test Plan (STP) document typically answers the following:
Testing should be based on Requirements & Design Documents

e What shall we test?

e How shall we test?

e Hardware/Software Requirements

e Where shall we test?

e Whoshall test?

e How often shall we test (Test Schedule)?

e How shall tests be documented? It is not enough simply to run tests; the results of the
tests must be systematically recorded. It must be possible to audit the testing process to
check that it has been carried out correctly

e System tests: This section, which may be separate from the test plan, defines the test cases
that should be applied to the system. These tests are derived from the system
requirements specification.

Part 2: Software Engineering

134 13 Testing

13.5 Bug Tracking Systems

All the results from the testing needs to be documented, stored and tracked.
For this purpose, we use a so-called Bug Tracking System.
Here are some popular Bug Tracking Systems in use today:

e Azure DevOps
e Jira

e Bugzilla

e ClearQuest

More about Bug Tracking Systems in Chapter 24 - Bug Tracking Systems.

We will focus on Azure DevOps in this document. The bug tracking features in Azure DevOps will
be discussed in another chapter.

In Azure DevOps we can add requirements, user stories, tasks, new features, bugs, etc. as so-called
“Work Items” (Figure 13-17).

Part 2: Software Engineering

135 13 Testing

All Bugs [Results] + X
Save Results Save Query 0 #* & @ B3 Openin Microsoft Office ~ #5 Edit Query ¢3 Column Opticns

Query Results: 2 iterns found (1 currently selected).

#o D 4 | Stack Rank 4 | Priority & | Severity . | State & | Title

2 - High Active Mew Web Site not working on Safari Web Browser
8 2 3 - Medium Active TV goes to sleep after 4 hours

OE®
Save Work Item 02 O [©] Previous o Mext
Bug 6 : New Web Site not working on Safari Web Browser
rs
New Web Site not working on Safari Web Browser
STATUS CLASSIFICATION PLANNING
Assigned Te Hans-Petter Halvorsen Area Weather System'\Wehb Site Stack Rank <Mone=
State Active Iteration Weather System\lteration 1 Priority 2
Reason Mew Severity 2 - High
REPRO STEPS ~ SYSTEM INFO TEST CASES HISTORY ALLLINKS ATTACHMENTS
Type your comment here.,
DISCUSSION ONLY ALL CHANGES
(no entries with comments)
b

Figure 13-17: Azure DevOps — Work Items

13.6 Test Environment

A testing environment is a setup of software and hardware on which the testing team is going to
perform the testing of the newly built software product.

Why do we need a Test Environment? Here are some reasons:
o “It works on my PC” says the Developer
e We need a Clean Environment when testing

e Onthe Developers PCs, we have all kind of Software installed that the Customer don’t
have, e.g. Development Tools like Visual Studio, etc.

e We need to test on different Platforms and Operating Systems

e Customers may use different Web Browsers

Part 2: Software Engineering

136 13 Testing

e Deployment: Test of Installation packages
e Make the software available for Testers
e etc.

This setup consists of the physical setup which includes hardware, and logical setup that includes
Server Operating system, client operating system, database server, front end running
environment, browser (if web application), IS (version on server side) or any other software
components required to run this software product.

This testing setup is to be built on both the ends —i.e. the server and client.
To set up such environments, virtualization is the answer.

More about virtualization below.

Developers Developers & Testers Customers

>

Developmenti ,\ Testing l >‘L Production

A Clean PC/Server (or a network The Customers
with PCs and Servers) where you
install and test your Software.
Today we typically set-up a Virtual

Typically the Developers Personal
Computer with Database, Web
Server and Programming

environment where you
unstall the final software

Software ;
g ¥ N Test Environment (Servers a“d,c,!'e'lt?{)
\ e O N g ,"/ D \\‘
J‘ \ g h ﬂ/’/ N \
y Development A . AR—)
\ Environment | & . i 4 . A
N S/ { Test Environment \ (Environment j
(A : / . S

Programming environments such as
Visual Studio, etc. should not be
installed in this environment. You
need to create .exe files etc. in
order to make your software run.

Figure 13-18: Development, Test and Production Environment

Part 2: Software Engineering

137 13 Testing

JUST IN CASE YOLI'RE STILL NOT
SLIRE WHETHER YOLI'RE IN A
SOFTWARE PROJECT

WAIT LUNTIL YOU HEAR THIS:

o)
X
0
Q
o
X
o)
0]
(@)

ON MY
MACHINE IT
WORKS

13.6.1 Virtualization

To create test environments easily, virtualization is the answer. There exists lots of different
virtualization solutions on the market today.

Here are some examples:

VMware Workstation/VMware Workstation Player
VMware vSphere

Microsoft Hyper-V

VirtualBox

VMware Fusion (Mac)

Parallels Desktop (Mac)

etc.

Part 2: Software Engineering

138 13 Testing

VMware Workstation Player is probably the simplest and easiest solution. You may download it for

free at no costs.

With VMware Workstation Player or other virtualization solutions you can create so-called Virtual
Machines (VM) where you can install and run all kinds of software.

In this way, you can easily test your software without destroying your own computer and you can
easily test in in different operating systems, etc.

7 VMware Player (Non-commercial use only) - olEl

Player v | o ~ = O

N \/o/come to Viware Player
@ Windows 8 |
@ Windows 7

=
@ Windows Server 2012

Create a New Virtual Machine

Create a new virtual machine, which will then be
added to the top of your lbrary.

Open a Virtual Machine

Open an existing virtual machine, which will then be
added to the top of your lbrary,

Upgrade to VMware Workstation

Get advanced features such as snapshots,
developer tool integration, and more.

Help
View VMware Player’s help contents.

® 0 &

This product is not icensed and is authorized for
L=y non-commercial use only. For commerdal use,
purchase a icense. Buy now.

Figure 13-19: VMware Workstation Player

Part 2: Software Engineering

139 13 Testing

[Windows Server 2012 R2 Standard - WMware Player (Non-commercial use only) | () e S

Player ~ | OE ~ o W ¢ @

Figure 13-20: Window Server 2012 running as a virtual machine

13.7 Terms used in Testing

Here we will discuss some terms used in software testing not covered earlier.

13.7.1 Bugs

A software bug is an error, flaw, failure, defect, or fault in a computer program or system that
produces an incorrect or unexpected result or causes it to behave in unintended ways.

They found a bug (a moth) inside a computer in 1947 that made the program not behaving as
expected. This was the “first” real bug.

13.7.2 Debugging

Debugging is about different techniques for finding and fixing bugs (errors that make your code
not work as expected) in your code. It is difficult to write code without errors (bugs), but e.g.,
Visual Studio and other tools have powerful Debugging functionality (breakpoints, etc.). The
Compiler will also find syntax errors, etc.

For more “advanced” bugs other methods are required (Unit Testing, Integration Testing,
Regression Testing, Acceptance Testing, etc.). The focus here will be on these methods, while
Debugging is something you learned in Programming courses.

Part 2: Software Engineering

140 13 Testing

13.7.3 Code Coverage

Code coverage is a measure used in software testing. It describes the degree to which the source
code of a program has been tested.

Example:

int foo (int x, int y)
{

int z = 0;

if ((x>0) && (y>0))

z = Xy

return z;

}

When we test this function, it depends on the input arguments which parts of the code will be
executed. Unit Tests should be written to cover all parts of the code.

13.7.4 Eat your own Dog food

“Eating your own dog food”, also called “dog-fooding”, is a slang term used to reference a scenario
in which a company (usually, a computer software company) uses its own product to demonstrate
the quality and capabilities of the product.

Example: Microsoft uses Windows PCs and Visual Studio to create their software.

SIMPLY EXPLAINED SIMPLY EXPLAINED

anod § el

oyod § wool

TODAY’S SPECIAL s

RUMEN $ 4.50 !
W\j JusT
SOMETHING

TO DRINK,
PLEASE!
L <)) :
l EAT YOLR OWN DOGFOOD

EAT SOMEONE ELSE'S DOGFOOD

[http://geek-and-poke.com]

Part 2: Software Engineering

141 13 Testing

13.7.5 Code/Feature Freeze

The Developer cannot add new features to the software, only fix bugs. When it is very close to
release, they cannot fix bugs either.

CODER’S DICTIONARY
TODAY: THE FEATURE FREEZE

geek & poke
@)

a0
&
I 9\%

FIXING A
MissingFeatureException?
-
YEP (] ‘

[http://geek-and-poke.com]

13.7.6 Test-Driven Development (TDD)

In TDD coding and testing are done in parallel. The tests are normally written before the code. TDD
was introduced as part of eXtreme Programming (XP).

13.7.7 Development-Driven Testing (DDT)

DDT is all about giving more responsibility to developers specifically, and the development process
in general. It works especially well when using test cases as requirements, and having the
developers write these test cases. But it’s not DDT unless those tests are written near the end of
the process, when the code is checked in, and the developers figure they’re done.

The advantages of Development-Driven Testing are many. Instead of tests driving the
development, it’s developers driving the tests, so you get just a few tests, and they almost always
all pass. The project team can deliver on time for a change, with zero bugs found in every
iteration. This makes management happy, and isn’t that really the ultimate barometer of
success? Also, velocity is increased dramatically when using this process.

Part 2: Software Engineering

142 13 Testing

Development-driven testing makes all the sense in the world for those who practice Agile.

TDD vs. DDT
SIMPLY EXPLAINED

assertFalse?
SHOULDN'T IT BE
assertTrue?

YOUR -\l
ROOM IS
STILL A
TOTAL MESS/!
. DIDN'T. YOU
X)) PROMISE ME
TO CLEAN
IT UpP?
L - -
i
i
-
. SAMY)

WITH assertTrue THE
TEST WENT RED

I ALWAYS
START WITH A
TEST

A\

DEVELOPMENT DRIVEN TESTS

TDD

[http://geek-and-poke.com]

13.8 The 7 Principles of Testing

The 7 Principles of Testing are as follows:

1. Testing shows the presence of Bugs: Software Testing reduces the probability of
undiscovered defects remaining in the software but even if no defects are found, itis not a
proof of correctness.

2. Exhaustive Testing is impossible: Testing everything is impossible! Instead we need
optimal amount of testing based on the risk assessment of the application.

3. Early Testing: Testing should start as early as possible in the Software Development Life
Cycle (SDLC)

4. Defect Clustering: A small number of modules contain most of the defects/bugs detected.

5. The Pesticide Paradox: If the same tests are repeated, eventually the same test cases will
no longer find new bugs

Part 2: Software Engineering

143 13 Testing

6. Testing is Context dependent: This means that the way you test a e-commerce site will be
different from the way you test a commercial off the shelf application

7. Absence of Error is a Fallacy: Finding and fixing defects does not help if the system build is
unusable and does not fulfill the users’ needs and requirements

For more information about these 7 principles of testing, see the following:

http://www.guru99.com/software-testing-seven-principles.html

and

http://www.testingexcellence.com/seven-principles-of-software-testing

13.9 Testing Summary

Figure 13-21 gives an overview of different Test Categories, Test Levels and Test Methods.

Testing Overview

Test Categories: Test Levels: Test Methods:

v

[Unit Testing }

GUI Testing

[Black-box Testing]

{ Stress Testing }

Regression Testing

[Load Testing]

[Security Testing J Usability
Testing

Performance
Testing

[Integration Testing }

[White-box Testing]

System Testing

‘ Functional
Testing

[Non Functional

Testing

[Acceptance Testing] etc

Figure 13-21: Test Categories, Test Levels and Test methods

13.10 Exercises

1. Why do we need to test the software?

2. List different Test methods

Part 2: Software Engineering

http://www.guru99.com/software-testing-seven-principles.html
http://www.testingexcellence.com/seven-principles-of-software-testing

144 13 Testing

3. We have 2 main categories of testing. Explain.

U

4. Explain the difference between a “Bug” and a “Feature”

5. What is Code/Feature Freeze?

6. What is “Dog-fooding”?

7. What is a Code Review?

8. What Explain TDD and DDT?

9. What is Unit Testing?

10. What is the difference between Functional and Non-Functional Testing?

Part 2: Software Engineering

14 Deployment and
Installation

14.1 Introduction

Getting software out of the hands of the developers into the hands of the users. More than 50% of
commissioned software is not used, mostly because it fails at deployment stage. 80% of the cost of
(commissioned) software comes at and after deployment.

Software deployment is all the activities that make a software system available for use.
Examples:
e Get the software out to the customers
e Creating Installation Packages
e Documentation
o Installation Guide, etc.
e |Installation

e etc.

Deployment strategies may vary depending of what kind of software we create, etc.

14.2 Releases

Now we are finished with all the development, testing and are ready to start the deployment

process.
Typically, we have the following “Internal” releases (see also Figure 14-1):
e AlphaRelease(s)
e Beta Release(s)

e RC-Release Candidate(s)

145

146 14 Deployment and Installation

You are finished:
* RTM —Release To Manufacturing

* Your software is good enough and it is ready for Deployment!

Requirements/Design

Plans made and approved

Beta

Inside work on track small adjustments missing Ready for Saleror Move in

Figure 14-1: Software Releases before Releasing the Software
Below we see an example of the Windows 8 life cycle releases:

* Start planning and development of Windows 8, 2008/2009 (the planning started before
Windows 7 was released)

— Internal Builds xxxx...xxxx

— Internal Alpha versions, Alpha 1, 2, 3

— Internal Builds xxxx...xxxx

— Internal Milestonel Release (build 7850), 2010.09.22

— Internal Milestone2 (build 7955), Milestone3 (build 7989)

* Developer Preview (build 8102), 2011.09.13

Part 2: Software Engineering

147 14 Deployment and Installation

— Internal Builds xxxx...xxxx

* Consumer Preview (build 8250), 2012.02.29
— Internal Builds xxxx...xxxx

* Release Preview (build 8400), 2012.05.28
— Internal Builds xxxx...xxxx

* RTM Release (build 9200), 2012.08.01

14.3 Deployment

What is Deployment?
Software deployment is all the activities that make a software system available for use.
Examples:

e Getthe software out to the customers

e Creating Installation Packages

e Documentation

o Installation Guide, etc.

e |Installation

e etc.
Deployment strategies may vary depending of what kind of software we create, etc.
Key Issues around Deployment:

* Business Processes: Most large software systems require the customer to change the way
they work.

* Training: No point in deploying software if the customers can't use it.
* Support: The need goes on, and on, and on.

* Deployment: How do you physically get the software installed.

* Equipment: Is the customer's hardware up to the job?

* Expertise: Does the customer have the IT expertise to install the software?

Part 2: Software Engineering

148 14 Deployment and Installation

* Upgrades: Can't avoid them!
* Integration: Shall the software interact/integrate with other systems of the customer.

* Performance: The Customer may not have the same hardware as in the Development/Test
Environment

14.4 Test and Production Environment

Typically, “everything” works on the computer that the developer of the code is using, but the
customer’s computer may use another OS, another version of the hardware, another version of a
3. party component or other software that your software relies on, etc. Therefore, it is very
important to test the software on other computers and other environments, different versions of
hardware, different versions of web browsers, etc.

During the software lifecycle, we have 3 different environments for the software we are creating:

e Development Environment
e Test Environment

e Production Environment

Figure 14-2 gives an overview of these different software environments.

Part 2: Software Engineering

149

14 Deployment and Installation

Developers

|

Developers & Testers

N

Development |

Typically the Developers Personal
Computer with Database, Web
Server and Programming

Customers

Testing

/

A Clean PC/Server (or a network
with PCs and Servers) where you
install and test your Software.

\‘L Production J

The Customers
environment where you
unstall the final software

Today we typically set-up a Virtual
Software i
m— T Y Test Environment (Servers and,(,:“en,t,s)
< ' \ — e v
(\ 3 : . - N

Development " - sradiieten /Z
{ Environment | 4) & Bt \
> ‘ ‘ nvironment _

(

\\

Programming environments such as
Visual Studio, etc. should not be
installed in this environment. You
need to create .exe files etc. in
order to make your software run.

Figure 14-2: Development-, Test- and Production Environment

geek & poke

DATA CENTER
DATA CENTER
EAST COAST EMEA

DATA CENTER
WEST COAST

DATA CENTER
ASIA PACIFIC

JIM’S MACHINE

yYou
DIDN'T FIND
THAT BUG, DID
yYouz

"ON MY MACHINE IT WORKS"
[http://geek-and-poke.com]

Test/Production Environment is an Infrastructure with Servers, Virtual Servers, Database Servers,
Web Servers, etc.

Part 2: Software Engineering

150 14 Deployment and Installation

¢ Local Infrastructure with Servers & Virtualization
* Cloud-based Infrastructure (monthly payment), e.g.:

¢ Windows Azure www.windowsazure.com

* Amazon Web Services (AWS) http://aws.amazon.com

* Google Cloud Platform https://cloud.google.com

e etc

14.4.1 Development Environment

This is where the developers create the code, typically the developer’s personal computer.

14.4.2 Production Environment

Production environment is a term used mostly by developers to describe the setting where
software and other products are put into operation for their intended uses by end users.

A production environment can be thought of as a real-time setting where programs are run and
hardware setups are installed and relied on for organization or commercial daily operations.

14.4.3 Test Environment

A testing environment is a setup of software and hardware on which the testing team is going to
perform the testing of the newly built software product.

This setup consists of the physical setup which includes hardware, and logical setup that includes
Server Operating system, client operating system, database server, front end running
environment, browser (if web application), IS (version on server side) or any other software

components required to run this software product.

This testing setup is to be built on both the ends —i.e. the server and client.

Part 2: Software Engineering

http://www.windowsazure.com/
http://aws.amazon.com/
https://cloud.google.com/

15 Project Documentation

During the software development, a lot of documentation (Figure 15-1) is created in the different
phases of the development.

5 End-User User Guides InsGtaIIc.l':\tion
tati e ides .
ocumentation __. - [Planning]
System .-~ Deployment DTN [
Documentation .° s : . .
Ry] . i Project Planning
B » Maintenance -~-__ !
K "® | Gantt Chart
z A
\ 1
Testing ‘ .
STD -
Test Plan ,J \-. I
Test Your Software N

with Documentation Requirements

)
]
Documentation "I\
1
1

\ Analysis

P ! T

I

. !
Implementation K SRS

o/ ! Software Requirements
AN " Specifications
Code AN P
A R
System Documenation "~ _ .’
Sa o o’
s . SDD Software Design Documents
Design

/ with ER Diagram, UML Diagrams, CAD Drawings

Figure 15-1: Example of Documentation during the SDLC

Some documents are for internal use inside the software company or inside the development
team, while other documents are important for the stakeholders and customers that are going to
use the software (Figure 15-2).

151

15 Project Documentation

152
Start
1. Planning Software
Development Plan
High-Level
g . Requirements and
) 2.Requierements Design Documents
*g" /Design — —
_LC) (The stakeholders, the) etaile
£ software team; architects, Requirements and
c UX designers, developers) | Design Documents
O o -
% [= Test Plans
£ 2. Testing —
% (QA people) Test Documentation
g ——
= System
> Documentation
.6‘ . -
a 3. End-user . Installation Guides
Documentation
(The people that
shall actually use User Manuals
v the software)
Finish

Figure 15-2: Software Documentation

Some important documents are:
e SDP - Software Development Plan

e SRS —Software Requirements Specifications

(SDP)
WHAT (SRS)
HOW (SDD)

ER Diagram (Database)
UML Diagrams (Code)
CAD Drawings, etc.

How to Test/ (STP)
What to Test

Proof that you have tested
and that the software works

as expected (STD)

Technical Stuff
(Super User/ IT dep.)

How to install it

How to use it
(End User)

o Adocument stating what at application must accomplish

e SDD - Software Design Document

o Adocument describing the design of a software application

e STP - Software Test Plan

o Documentation stating what parts of an application will be tested, and the schedule

of when the testing is to be performed

e STD - Software Test Documentation

o Introduction, Test Plan, Test Design, Test Cases, Test procedures, Test Log, ...,

Summary

Part 2: Software Engineering

153 15 Project Documentation

See Figure 15-3 for an overview of documentation categories used in a project.

Project
Documentation
Process Product
Documentation Documentation
System User
Documentation Documentation

Figure 15-3: Software Project Documentation
Documentation produced during a software Project can be divided into 2 main categories:
* Process Documentation

— These documents record the process of development and maintenance, e.g., Plans,
Schedules (e.g., Gantt Charts), etc.

¢ Product Documentation

— These documents describe the product that is being developed. Can be divided into
2 sub categories:

* System Documentation
* Used by engineers developing and maintaining the system
* User Documentation

* Used by the people that is using the system

Part 2: Software Engineering

154 15 Project Documentation

Here are some Software Documentation Requirements:

* Should act as a communication medium between members of the Development Team
(Process Documentation)

* Information repository used by Maintenance Engineers (Product Documentation)

* Information for Management to help them Plan, Budget and Schedule the Software
Development Process (Process Documentation)

* Some of the documents should tell users how to use and administer the system (Product
Documentation)

* Documents for Quality Control, System Certification, etc. (Process/Product Documentation)

Satisfying these requirements requires different types of documents from informal working
documents through professionally produced User Manuals

15.1 Process Documentation

Purpose:

1. Process Documentation is produced so that the development of the system can be
managed

2. ltis an essential component of plan-driven approaches (e.g., Waterfall)
3. Agile Approaches: The Goal is to minimize the amount of Process Documentation
We have different categories of Process Documentation:

* Plans, estimates and schedules. These are documents produced by managers which are
used to predict and to control the software process.

* Reports. These are documents which report how resources were used during the process
of development.

* Standards. These are documents which set out how the process is to be implemented.
These may be developed from organizational, national or international standards.

* Working papers. These are often the principal technical communication documents in a
project. They record the ideas and thoughts of the engineers working on the project, are
interim versions of product documentation, describe implementation strategies and set
out problems which have been identified. They often, implicitly, record the rationale for
design decisions.

Part 2: Software Engineering

155 15 Project Documentation

* E-mail messages, wikis, etc. These record the details of everyday communications
between managers and development engineers.

15.2 Product Documentation

Purpose:
* Describing the delivered software product
* Unlike most process documentation, it has a relatively long life. It must
* Evolve in step with the product that it describes. Product documentation includes
— User documentation, which tells users how to use the software product,

— System Documentation, which is principally intended for maintenance engineers.

15.2.1 System Documentation

The system documentation describes how the system is designed and how it works in detail.

1. System documentation includes all the documents describing the system itself from the
requirements specification to the final acceptance test plan.

2. Documents describing the design, implementation and testing of a system are essential if
the program is to be understood and maintained.

3. Like user documentation, it is important that system documentation is structured, with
overviews leading the reader into more formal and detailed descriptions of each aspect of
the system.

In Figure 15-4 we see an overview of different product documentation and readers of such
documents.

Part 2: Software Engineering

156

15 Project Documentation

Managers and
system evaluators

System
administrators

Novice users

Experienced users

Functional system
description

Installation
document

Y

Y

Provides an overview of the
system'’s purpose and a
description of the most
important system services

Introductory
manual

Y

Describes how to install the
system on the intended
platforms

Reference
manual

Briefly describes how to get
started with the system

Provides a detailed description
of all system facilities

Figure 15-4: Product Documentation Types & Readers [1]

For large systems that are developed to a customer’s specification, the system documentation

should include:

* The requirements document.

* A document describing the system architecture.

* For each program in the system, a description of the architecture of that program.

* For each component in the system, a description of its functionality and interfaces.

* Program source code listings, which should be commented where the comments should

explain complex sections of code and provide a rationale for the coding method used.

* If meaningful names are used and a good, structured programming style is used,

much of the code should be self-documenting without the need for additional

comments.

* This information is now normally maintained electronically rather than on paper

with selected information printed on demand from readers.

* Validation documents describing how each program is validated and how the validation

information relates to the requirements.

* These may be required for the quality assurance processes in the organization.

Part 2: Software Engineering

157 15 Project Documentation

* A System Maintenance Guide, which describes known problems with the system,
describes which parts of the system are hardware and software dependent and which
describes how evolution of the system has been considered in its design.

15.2.2 User Documentation

Users of a system are not all the same. The producer of documentation must structure it to cater
for different user tasks and different levels of expertise and experience.

It is particularly important to distinguish between end-users and system administrators:
* End-users use the software to assist with some task.

— This may be flying an aircraft, managing insurance policies, writing a book, etc. They
want to know how the software can help them. They are not interested in
computer or administration details.

* System administrators are responsible for managing the software used by end-users.

— This may involve acting as an operator if the system is a large mainframe system, as
a network manager is the system involves a network of workstations or as a
technical guru who fixes end-users software problems and who liaises between
users and the software supplier.

We have different user documentation, such as:

e User Manual

e Installation Guide
e Wiki

e etc.

Part 2: Software Engineering

158 15 Project Documentation

OK, GREAT!
JULIE, YOU'RE BRESPONSIBLE FOR THE
GENERIC DATA ACCESS LAYER.
JIM, YOU DO THE UT FRAMEWORK
AND JOHN THE BULE ENEINE.
NOW I NEED SOMEBODY FOR THE
USER DOCUMENTA...

geek & poke

A

[http://geek-and-poke.com]
User Manual:

A user guide or user's guide, also commonly known as a manual, is a technical communication
document intended to give assistance to people using a system. It is usually written by a technical
writer, although user guides are written by programmers, product or project managers, or other
technical staff, particularly in smaller companies

The sections of a user manual often include:
* Acover page
* Atitle page and copyright page

* Apreface, containing details of related documents and information on how to navigate the
user guide

* Acontents page

* Aguide on how to use at least the main functions of the system (Text + Screen Shots)

Part 2: Software Engineering

159 15 Project Documentation

* Atroubleshooting section detailing possible errors or problems that may occur, along with

how to fix them
* AFAQ(Frequently Asked Questions)
* Where to find further help, and contact details

* Aglossary and, for larger documents, an index

15.3 Setup & Distribution

As mentioned earlier we have two categories of software; generics products and customized

products.

If we have a generic product, it is especially important that the customers can install the software

you create.

For e.g., web products setup and distribution to the end user computers are not necessary, since
the software is installed on a Web Server and can be accessed through an ordinary web browser.

Installation is about:
* Package the software
* Executable files
* Createinstallation packages
* InstallShield, etc. (lots of tools available)
* Make it available (nowadays over Internet or on DVD)
* Give the customer turn-key installers, which will:

* Check the system for missing dependencies or drivers etc. (e.g., Your software may
need .NET X.x, etc.)

* Install the software on the system

* Set up any necessary license information, license managers, etc.

Part 2: Software Engineering

16 Software Maintenance

16.1 Introduction

Software Maintenance is about:

e Software has bugs (Bug /Support incidents need to be tracked and followed up -> A good
tool is needed).

e New features are required.

e Circumstances change. Therefore, software is changed. Who changes it?

e Development team broken up, maintenance may be done by different company!

e Repeated change leads to architectural degradation. Old systems may have been degraded
from the start!

e Software rots. Even with no code changes, the systems change, and eventually you can't
compile the software.

Software Maintenance is defined as [12]: “The process of modifying a software system or
component after delivery to correct faults, improve performance or other attributes, or adapt to a
changed environment”.

40-90% of the software life cycle cost is about maintenance.
Examples:

* The Y2K problem
* New versions of the OS require often adjustment to your software
* New requirements and customer needs

We may divide into 2 different types of Maintenance:
e Repair
o Fixing defects/bugs
e Enhancement
o New Requirements

o Change in Design or Implementation (No functional change)

16.2 Categories

160

161 16 Software Maintenance

Again, we can divide maintenance into 4 categories:

* Corrective maintenance
* Adaptive maintenance

* Perfective maintenance
* Preventive maintenance

In Figure 16-1 we see an overview of the different software maintenance categories [12].

Software
Maintenance

I Corrective Adaptive Perfective Preventive

Figure 16-1: Software Maintenance Categories
In Table 9-1 we the differences between these categories.

Table 16-1: Software Maintenance Overview

Maintenance Description

Corrective Repair of defects relative to existing requirements. These defects are typically
discovered by customers as they start using your software.

Adaptive Adapt your software to changes in the operating environment, e.g., when a
new OS is released or a new version of the hardware. As software systems
evolve, it is very likely that it will occurs changes in the external environment
(OS, hardware, etc.) your software depends on.

Perfective New features based on new user requests. The software must continuously
adapt new needs or your software will become useless.

Preventive Changes in your software to make it easier to maintain. Changes from
Corrective, Adaptive and Perfective makes your software more complex, more
difficult to maintain, etc. Preventive maintenance in form of Refactoring

should be done on a regular basis

Part 2: Software Engineering

162 16 Software Maintenance

While [1] only divide into 3 different categories, see Figure 16-2.

Software Maintenance

3 Categories (according to |. Sommerville, Software Engineering):

1. Fault Repairs
* Fixing Errors after Sofware is
released
2. Environmental Adaption
* OS,Hardware, etc. changes
3. Functionality Addition
* The System Requirments change

Fault repair
(17%)

Functionality

addition or

modification
(65%)

Environmental
adaptation
(18%)

A
System 1
System 2
1 T T T | 1 | T T >
0 50 100 150 200 250 300 350 400 450 500 8
|:| Development costs I:I Maintenance costs I. Sommerville, Software Engineering, 9 ed.: Pearson, 2010.

Figure 16-2: Maintenance Categories [1]

Part 2: Software Engineering

Part 3 : Platforms &
Architecture

In this part, we give an overview of tools used (and needed) in modern software engineering, like
collaboration tools, source code control tools, programming platforms, frameworks and
languages, etc.

163

17 Software Platforms

17.1 Introduction

We have lots of different platforms today, here we will discuss the most common platforms used

today. They are:

o Desktop: We have different Desktop platforms such as Windows, Mac OS X, Linux, etc. To
create applications for Windows we can use, e.g., Visual Studio and C#. To create
applications for Mac OS X we can use, e.g., Xcode and Objective-C/Swift. LabVIEW exists for
both Windows, Mac OS X and Linux.

e Mobile: Today we have 3 major Mobile platforms: iOS (iPhone and iPad), Android (running
on different Smartphones and Tablets) and Windows 8 (Tablets)/Windows 8 Phone (Smart
Phones).

e Web: Web applications runs inside a web browser, such as e.g., Internet Explorer, Chrome,
Safari, Opera or Firefox. In the simplest for we can use HTML. For more dynamic web pages
we can use ASP.NET, PHP, JavaScript, AJAX, etc.

Here are some examples:
Desktop

* Windows

* MacOS

* Linux
Web

* ASP.NET

* PHP

« IS

* Apache

* HTML

* JavaScript

* AJAX

Mobile Devices

* iOS (iPhone, iPad, iPod)
¢ Android
* Windows Phone

164

165

17 Software Platforms

Server-side

¢ Databases
e Web Servers

Figure 17-1 shows some advantages and disadvantages with the different Platforms.

Advantages/Disadvantages

[Desktop

v

{ Web

N '

Mobile Devices

* Good Performance

* Different Platforms,
different
Programming
metods and
languages

* |nstallation is not
always easy

L]

L]

Runs inside a Web Browser
The Performance is not so good as it
is for ordinary Desktop Applications

Multiplatform, Works on all

platforms, Code only once
More complicated to create rich user

interfaces

Some differences in the behaviour
depending on the Web Browser.
End-user dont need to install anything

Good performance, but less
performance than an ordinary
computer

Different Platforms, different
Programming metods and
languages

Easy to install and use Apps

Figure 17-1: Advantages/Disadvantages with different Platforms

17.2 Platform Vendors

3 main vendors of such platforms are Microsoft, Apple and Google. They all deliver platforms for
Desktop and Mobile systems, but they have different approaches, see Figure 17-2.

Desktop —_— Windows 8
Microsoft Tablet 4 Windows RT
Phone Windows Phone
Desktop — OsX
Apple
PP Tablet \
Phone
Desktop - Chrome OS
Google Tablet _—
Android
Phone /

Figure 17-2: Desktop and Mobile Platforms Vendors

Part 3: Platforms &

166 17 Software Platforms

17.3 Desktop

On the desktop, we have 3 main platforms, namely Windows, Linux and macOS. In addition, we
have Chrome OS from Google as a 4. alternative.

Windows ~ macOsS Chrome OS

Figure 17-3: Desktop Platforms: Windows, Linux, macOS, Chrome OS

We have lots of development tools for these platforms, see Figure 17-4. These will be discussed
more in detailed later.

Desktop Platforms
(I) Clients

" Windows PC c# WPE

pq Visual Studio
@ Windows PC, Mac, Linux

(2) Windows PC, Mac, Linux e

—
JOOIOICICHT NATIONAL INSTRUMENTS

LabVIEW ™

Figure 17-4: Development Tools available for different Desktop Platform

Objective-C

17.3.1 Windows

Microsoft Windows is a series of graphical interface operating systems developed, marketed, and
sold by Microsoft.

Part 3: Platforms &

167 17 Software Platforms

'35 ‘86 ’B? '83 59 90 91 92 93 ‘94" 5 96'97 ‘98°99°00 ‘01‘02 '03 ‘04'05'06'07 '08'0910'11"12°13°14"15
ifically

Windows CE (or Embedded Compad) - igned for tabl h ARM
is an OS5 for embedded s,m e

Windows Pocket PC and Windows Mobile
were 05 for PDA, smartphones, and other
mobile devices. Later the name was
changed to Windows Phone to reflect the
market. They were all based on Windows CE.

Marked in green are the server-only Windows OS.
Before Windows XP. Microsoft made each O5 with
an edition for servers, rather than building separate 05,

Explanation of armows: | Windows CE is based on code from Windows 35. 1. Windows Pocket PC 2000 is based on Windows CE 3.0. 11. Windows Mobile &.x is based on Windows CE 5.x,
rather than CE 6.0, IV, Windows Phone 7 is based on code from both Windows CE 6.0 and CE 7.0, V. Windows Vista was built on code from Windows Server 2003, rather than Windaws XP

Figure 17-5: Windows Release History
There exists lot of Windows releases, some of them are:

e Windows 3
e Windows 95
e Windows NT
e Windows XP
e Windows 7
e Windows 8
e Windows 10

In Figure 17-6 we see the first Windows version (Windows 1.0).

Part 3: Platforms &

168

17 Software Platforms

Game Skill

= 15-D05 Executive Write - READHE DO
File Wiew Special File Edit Search
Character Paragraph
n[— He==] v [—] Do e
Gz % 5 -
ntormation shoull 4
ABC . Microsoft Windows indows. Alza co
BUIL MS-DOS Executive Addendurm encl
CALC
Eglﬁﬁ ﬂ Uersion 1.81
- - IMHoOUT THE SO
Egg Copyright [1985, Microsoft Corp. e e
- [his may be pref
CGA. bnfiguration as it
CITO - ture change the
CLIP Disk Space Free: 300824K ion of the Ik
Elﬁlt]rIFrl Memory Free: 303K leposier=na wil
COMTROL .EXE EGAMOND.GRB HPLA '
COURA.FOH EGAMOND .LGO IBNMG
COURE .FOH EMM._AT Joy RURMNIMNG BATCH [.EAT] FILE
COURC .FOH EHH.PC KER If vou run a standard applicati

1

Fage

Figure 17-6: Windows 1.0

should create a PIF file far the |

e

With Windows 8 Microsoft changes the user experience dramatically, see Figure 17-7.

Start

ET

Calendam

17.3.2 macOS

Adm

Store

e

Internet

SkyDrive Games

Contacts Messaging

Figure 17-7: Windows 8

1

Video

inistrator

Camera

]

Finance

macOS (Figure 17-8) is developed by Apple Inc. macOS runs only on Mac Computers from Apple. It
is a UNIX-based OS based on NeXT OS (Apple bought NeXT, and Steve Jobs returned to Apple as
CEO) because Apples classic OS from 1984 (the first Macintosh) and later (Mac OS 9) was lacking
behind — they needed a fresh start.

In macOS software can be deployed to Mac App Store for easy installation.

Part 3: Platforms &

169 17 Software Platforms

A popular development platform on macOS is the Xcode IDE and the Swift programming language.

& Finder File Edit View Go Window Help) @) <O MG Mon3:31PM Edward Q @ =

macOS Sierra

Version 10.12 Beta (16A201w)

MacBook Pro (Reting, 13-inch, Early 2015)
Processor 2.7 Gtz intel Core iS5
Momeey & G8 1867 Motz COR3

Graphics Intel iris Graphics 8100 1536 M8
Serial Number CO2QULUPVHS

System Report. Software Update

Figure 17-8: macOS

The different releases of Mac OS X is named after big cats like Puma, Jaguar, Tiger Leopard, Lion,

see Figure 17-9.

Part 3: Platforms &

https://www.google.no/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiKlZjXt_bQAhXJ3iwKHeoHDU8QjRwIBw&url=http://www.pcmag.com/article/345500/10-things-you-need-to-know-about-macos-sierra&psig=AFQjCNH5Uqk6QTVGorhDysGfjlntMBTBwA&ust=1481899418639634

170 17 Software Platforms

OS X

Mac OS X 10.1 Cheetha 2001
Mac OS X 10.2 Puma
Mac OS X 10.3 Jaguar
Mac OS X 10.4 Tiger
Mac OS X 10.5 Leopard

s Mac OS X 10.6 Snow Leopard

Mac OS X 10.7 Lion

@ Mac OS X 10.8 Mountain Lion
! 44 2012

Figure 17-9: Mac OS X Release History

The Mac OS X 10.9 was called “OS X Mavericks”, so from this version they have stopped using
names from big cats (all the names were taken?).

The latest version is called “macOS Catalina”, so they have switched from big cats to famous
places in California, USA. They have also stopped using OS X, now it is called macOS.

17.3.3 Linux

Linux is UNIX-like operation system. It is a Free/Open Source software platform. Linus Torvalds is
the founder of the Linux kernel. Linux was originally developed as a free operating system for
Intel x86-based personal computers. It has since been ported to more computer hardware
platforms than any other operating system.

From Figure 17-10 we see that both Linux and Mac OS X have their origins from the UNIX platform.

Part 3: Platforms &

171 17 Software Platforms
1970 1980 1990 2000 Time
FreeBSD 7.2]
: NetBSD 5.0
BSD family - |
L-{ OpenBSD 4.5]
| BSD (Berkeley Software Distribution) |
BilJoy wlsunos 4.3
Darwin
»{ Nextstep 3.3
Macos X 5.7
Xenixos | Apple Computer
Microsoft/SCO GNU/Hurd K
Richard Staliman _w.| GNU/LInux 2.630.1]
-;I'mmx | Linus Torvalds 3.1.3a
Andrew S. Tanenbaum 777
|Rese-arch UNIX 10 |
Beli Labs: Ken Thompson,
Dennis Ritchie, et al. Commerclal UNIX
ATET | Univel/SCO
-»{solaris 10 5/09 |
Sun Microsystems
System Il & V family =|_nP-ux 11i v3|
L] A 7.1.4 MP4 6.
IBM |
= IR 6.5.30
56!

Figure 17-10: UNIX History

Different Vendors/different versions/distributions, e.g.:

e Fedora

e Red Hat Linux
e SUSE

e Mandriva

e Ubuntu

e etc.

The penguin symbol (Figure 17-11) is typical for Linux.

Part 3: Platforms &

172

17 Software Platforms

©
) |

Figure 17-11: The Linux Mascot

17.4 Web

Web have become more and more important as a platform for developing software.

Here are some keywords:

HTML

JavaScript

ASP.NET

PHP

Internet Information Services (I1S)
Apache

A Web Browser and HTML are the foundation for web pages. HyperText Markup Language (HTML)

is the main markup language for creating web pages and other information that can be displayed

in a web browser.

In Figure 17-12 we see the typical web architecture, including web browsers, HTML, CSS,

JavaScript and a web server for hosting the web pages.

Part 3: Platforms &

173 17 Software Platforms

Q

Internet Explorer Chrome Firefox Opera Safari
= [Web Browser J
R
(@) :

HTML CSS JavaScript
(]
.'g - ~
(%]
d { Web Server J
>
@
v

Figure 17-12: Web Architecture

In Figure 17-13 we se the triangle of web programming. You cannot create a modern web page
without knowing the basics of HTML, CSS and JavaScript. They are the basic building blocks when
creating web pages.

HTML

Web Programming

CSS]<—> JavaScript

Figure 17-13: The triangle of Web Programming

HyperText Markup Language (HTML) is the visual appearance of a Web Site. All Web Browser
understand HTML. The latest version is HTML 5. CSS (Cascading Style Sheets) define how to display

Part 3: Platforms &

174 17 Software Platforms

HTML elements. CSSis used to control the style and layout of multiple Web pages all at once.
JavaScript is the programming language of the Web. All modern HTML pages are using JavaScript.

17.4.1 Web Servers

Web Servers are used to host web sites and web pages. The term web server can refer to either
the hardware (the computer) or the software (the computer application) that helps to deliver web
content that can be accessed through the Internet.

The following web servers (software) are very popular today:

e Internet Information Services (11S) (included with Windows)
e Apache
e Nginx (pronounced "engine x")

See Figure 17-14.

Web Browser Client-side

HTML, CSS, JavaScript
Web Page (HTML)

"

Web Server Server-side
Figure 17-14: Web Server

17.4.2 Web Frameworks

ASP.NET is a web application framework developed by Microsoft to allow programmers to build
dynamic web sites, web applications and web services.

ASP.NET is part of the Visual Studio package.

It was first released in January 2002 with version 1.0 of the .NET Framework, and is the successor
to Microsoft's Active Server Pages (ASP) technology. ASP.NET is built on the Common Language
Runtime (CLR), allowing programmers to write ASP.NET code using any supported .NET language,
such as C# and VB.NET.

Part 3: Platforms &

175 17 Software Platforms

ASP.NET web pages or webpage, known officially as Web Forms], are the main building block for
application development. Web forms are contained in files with an “.aspx” extension.

See Figure 17-15.

Web Browser

1=
Q
[W]
HTVIL JavaScript CSS
Web Server
@ -
K=
G ASP.NET
g L -
@ q N
@ C#/VB.NET
A A

.NET Framework

Figure 17-15: ASP.NET

For more information about ASP.NET, please see the Tutorial “ASP.NET and Web Programming”
[17].

17.4.3 ASP.NET Core

The new .NET Core is a lightweight cross-platform subset of the full .NET Framework. See Figure
17-16.

Part 3: Platforms &

176 17 Software Platforms

ASP.NET Core 1.0 MVC ’ ‘ ASP.NET Core 1.0 Web API

ASP.NET Core 1.0
[y,
[ASP.NET Web Forms
.NET Framework 4.6.x ’ ‘ .NET Core 1.0
Windows only Cross-platform

Windows, Mac, Linux

e aw

CLR — Common Language Runtime

Figure 17-16: ASP.NET Core

17.4.4 Web Scripting Languages

A scripting language is a lightweight programming language. JavaScript and PHP is programming
code that can be inserted into HTML pages. JavaScript inserted into HTML pages, can be executed
by all modern web browsers.

JavaScript:

JavaScript is THE scripting language of the Web. JavaScript is used in billions of Web pages to add
functionality, validate forms, communicate with the server, and much more.

To insert a JavaScript into an HTML page, use the <script> tag. The <script> and </script> tells
where the JavaScript starts and ends. The lines between the <script> and </script> contain the
JavaScript. Below we see an example.

<!DOCTYPE html>
<html>

<head> s'EP
<script>its
function myFunction () s
{iste!
document .getElementById ("demo") . innerHTML="My First JavaScript
Function" ;i
}ite!
</script>%ﬁ
</head>

<body>

<h1>My Web Page</hl1>

<p id="demo">A Paragraph</p>

<button type="button" onclick="myFunction ()">Try it</button>
</body>its

</html>

Part 3: Platforms &

177 17 Software Platforms

PHP:

PHP is a server scripting language and is a powerful tool for making dynamic and interactive Web
pages. PHP is free to use (open source) and it is widely used today.

The PHP code is merged between the HTML code, and the PHP code is executed on the web server
and translated to pure HTML syntax. Below we see an example.

<!DOCTYPE html>
<html>
<body>

<hl>My first PHP page</hl>
<?php
echo "Hello World!";

?>

</body>
</html>

Typically, you have a combination of PHP code, HTML and JavaScript on a web page.

PHP runs on different platforms (Windows, Linux, Unix, Mac OS X, etc.) and it is compatible with
almost all web servers used today (Apache, IIS, etc.). PHP has support for a wide range of
databases as well.

17.5 Mobile Devices

Today we have the following Mobile platforms:

e iPhone/iPad using iOS
e Android

e Windows 8

e Windows Phone

We have several different platforms, but these are the 3 major platforms.

See Figure 17-17.

Part 3: Platforms &

178 17 Software Platforms

@ Mobile Platforms = |
- |

B

Android Windows/Mac, Linux
! Android
& J Tablet or .
ios @
Eclipse Java &

OosX .
Mountain Lion

—_— Visual Studio

c Objective-C

Mac

m \A/;
Windows 8
=E
Windows 8 PC or Tablet

Figure 17-17: Mobile Platforms
Below we will give a short overview these platforms.

In general, we have 2 different kind of apps for mobile devices (Figure 17-18), i.e., we can
distinguish between “native apps” and “web apps”. Web apps are created using HTML 5
technology and runs inside a standard web browser, while native apps are created specifically for
a specific device or platform, such as an iOS device, Android device, etc. If you want to support
more than one platform, you need to develop and maintain one app for each of these platforms.

Different platforms need different programming methods and languages, but native apps provide
better performance and usability compared to web-based apps. Native apps can use APIs that is
provided by the vendor, they have access to built-in sensors, GPS, etc.

Part 3: Platforms &

179 17 Software Platforms

Mobile Apps

« B, 7Y

Native Apps HTML 5 Apps |
Only 1 App
— J is needed
pp
App 1 App 2 x Web
°~ App 3 == Windows Browser
-
EEl -
lUS =m; W$QSOWS |

Figure 17-18: Native vs. Web Apps

Web apps are not real applications; they are websites that, in many ways, look and feel like native
applications, but are not implemented as such. They are run by a browser and typically written in
HTMLS. Users first access them as they would access any web page: they navigate to a special URL
and then have the option of “installing” them on their home screen by creating a bookmark to that

page.

Web apps became popular when HTML5 came around and people realized that they can obtain
native-like—functionality in the browser. Today, as more and more sites use HTMLS5, the distinction
between web apps and regular web pages has become blurry.

Native Apps vs. Web Apps:

e Native apps live on the device and are accessed through icons on the device home screen.

e Native apps are installed through an application store (such as Google Play or Apple’s App
Store).

e They are developed specifically for one platform, and can take full advantage of all the
device features — they can use the camera, the GPS, the accelerometer, the compass,
contacts list, etc.

Native apps can use the device’s notification system and can work offline.

17.5.1 i0S

iOS (see Figure 17-19) is a mobile operating system developed and distributed by Apple Inc.
Created in 2007 together with the iPhone. It has been extended to support other Apple devices
such as the iPod touch (2007) and iPad (2010). With iOS 7 and later the OS have gone through a
large makeover, compared to previous versions.

Part 3: Platforms &

180 17 Software Platforms

Weather, Passbook

7
¢S

App Store Game Center

Safari
Figure 17-19:i0S (left: iOS 6, right: iOS 7)
iOS is derived from OS X, which is the operation system used on Apple Mac computers.

Apps can be downloaded from the App Store. To create Apps, you use the Xcode IDE and the
Objective-C or Swift programming language. You need the iOS SDK, which is included with Xcode.

Xcode is only available for Mac OS X, this means you need a Mac computer to create apps for the
iOS platform.

17.5.2 Android

Android (see Figure 17-20) is a Linux-based operating system designed for mobile devices such as
smartphones and tablets. Android is developed by Google.

The first Android phone was sold in 2008.

Part 3: Platforms &

181 17 Software Platforms

Figure 17-20: Android

Android works on hardware from different vendors.

The source code for Android is available under a free and open-source software license, which

means everybody may change it and create their own version of it. Vendors like Samsung, etc. do
this.

You use the Eclipse IDE and the Java programming language to create apps for Android. Apps can
be downloaded from Google Play, Amazon AppStore for Android, etc. Google Play is the official
App Store for Android.

Figure 17-21 gives an overview of the different Android versions:

Part 3: Platforms &

182 17 Software Platforms

Honeycomb Ice Cream Sandwich Jelly Bean

Figure 17-21 Android Versions

Notice that all Android versions are named after a dessert, a cake or other sorts of candy. They are
also in alphabetical orders:

e C(Cupcake)

e D (Donut)
e E (Eclair)
e F(Froyo)

e G (Gingerbread)

e H (Honeycomb)

e | (Ice Cream Sandwich)

e J(Jelly Bean)

e K (KitKat) — Android 4.4x

e L (Lollipop) —Android 5.x

e M (Marshmallow) — Android 6
e N (Nougat) —Android 7

e O (Oro)—-Android 8

e P (Pie) —Android 9

Now, the latest version is just called Android 10.

Part 3: Platforms &

183

17 Software Platforms

®ANDROID 5 android:

Lollipop

v6.0 Marshmallow

More about Android for Developers here:

http://developer.android.com/index.html

Here you can get detailed information about Android and download resources, development

tools, etc., including Android Studio, which is thee tool you should use when developing Apps for

the Android platform.

Android Studio is the official IDE for developing Apps for Android, but you may use many other
IDEs as well. Especially, many use the Eclipse software. In that case, you need to download and

install the Android SDK Tools.

Figure 17-22 shows data about the relative number of devices running a given version of the

Android platform.

22

P o
237

40.3-
404

41x
4.2.x
43
4.4
5.0
5.1

6.0

8

Froyo 0.2%
Gingerbread 10 3.8%
Ice Cream 15 3.3%
Sandwich
Jelly Bean 16 11.0%
17 13.9%
18 4.1%
KitKat 19 37.8%
Lollipop 21 15.5%
22 10.1%
Marshmallow 23 0.3%

Lollipop

KitKat

————=— Marshmallow
2\ Froyo

"\ Gingerbread
lce Cream Sandwich

Jelly Bean

Figure 17-22: Android versions (2015.11.09)

Here you can find more information about the different versions, etc.:

http://developer.android.com/about/dashboards/index.html

Part 3: Platforms &

http://developer.android.com/index.html
http://developer.android.com/about/dashboards/index.html

184 17 Software Platforms

Android has become a widely used platform for many kinds of devices, including smartphones,
tablets, TV’s (Android TV), watches (Android Wear), and even cars (Android Auto).

17.5.3 Windows 10

Windows 10 is the newest version of Windows. From version 8 (see Figure 17-23), Windows was
designed to work on both ordinary computers as well as tablets.

Start Administrator

el e n

ET Internet Store Camera

L/
- a
Calenda SkyDrive Games Video Finance

Contacts Messaging

Figure 17-23: Windows 8
Universal Apps may be downloaded from Windows Store which is integrated into Windows 10.

In Figure 17-24 we see an overview of the Windows release history, from Windows 1.0 released in
1985 to Windows 8/Windows RT released in 2012.

Part 3: Platforms &

185

17 Software Platforms

17

85 85 87 58 89 ‘90 ‘91 92 93 ‘94 '95°96 '97 '98 '99'00 ‘0102 ‘03 '04 '05°06 ‘07 '08 '09'10°11"12°13'14*15
e \ I A T I T N O y | I I
IR BRI

1 | I Ll
T [T | I T T T T T T T T
i i Original Windows operating E‘g: ;har;\"i"d&mdphongs E .
ased on Indows , outis
systems based on MS-DOS.

entirely rebuilt and shares NT code

Discontinued since Windows ME e RS)

Windows RT is an OS specifically

CE1.0 CE30CE4x CE5x CE 6.0 i 11 designed for tablets with ARM
CE 2.0 Pocket PC Mobile processors and also shares code

_ _ 2002 2003 SE \ M G with Windows 8.

Windows Pocket PC and Windows Mobile Pock l PC Mobil

were OS for PDA, smartphones, and other 030%0 230'33 Mobile 5

mobile devices. Later the name was

changed to Windows Phone to reflect the

market. They were all based on Windows CE.

With Windows NT 3.1 Microsoft
introduced its new NT family of
operating systems. The new hybrid

kernel was independent from MS-
DOS and the OS was fully 32 bit.
Windows 8 is the latest successor
from the NT family.

Marked in green are the server-only Windows OS.
Before Windows XP, Microsoft made each OS with
an edition for servers, rather than building separate OS.

Explanation of arrows: |. Windows CE is based on code from Windows 95. Il. Windows Pocket PC 2000 is based on Windows CE 3.0. lll. Windows Mobile 6.x is based on Windows CE 5.x,
rather than CE 6.0. IV. Windows Phone 7 is based on code from both Windows CE 6.0 and CE 7.0. V. Windows Vista was built on code from Windows Server 2003, rather than Windows XP.

Figure 17-24: Windows Release History

.6 Cloud Computing

Cloud computing (Figure 17-25) is the use of computing resources (hardware and software) that
are delivered as a service over a network (typically the Internet)

Examples:

1.

Team Foundation Service
iCloud

Windows Azure

Amazon Web Services
Google Cloud Platform

etc.

Part 3: Platforms &

186 17 Software Platforms

=

Servers

Application

A [NEWS | J—l_ @
Monitoring (- \ :

) Collaboration Finance

Desktops

Content Communication
Platform
[=2 2
25 B T
Identity Oueue [
O bject Storage Runtime Database
Infrastructure
i Compute @ N ﬁ

Block Storage

Phones Tablets

Cloud Computing

Figure 17-25: Cloud Computing (Wikipedia)

17.7 Open Source

For more information about Open Source, see the following:

http://en.wikipedia.org/wiki/Open-source software

Part 3: Platforms &

http://en.wikipedia.org/wiki/Open-source_software

18 Software Frameworks &
Languages

There exist probably thousands of different programming languages. Each of these programming
languages has good and bad qualities and is preferable in different situations. Some language is
good to use when you need to communicate with a database, while others are good to use when
you want to develop web applications, etc. So, in most situations you probably need to know and
use more than one programming language.

In this chapter, we will discuss some of the most used (probably) programming languages today.

18.1 Object-Oriented Programming (OOP)

Object-oriented programming (OOP) is a programming language model organized around
"objects" rather than "actions" and data rather than logic. Historically, a program has been viewed
as a logical procedure that takes input data, processes it, and produces output data.

The first step in OOP is to identify all the objects you want to manipulate and how they relate to
each other, an exercise often known as data modeling. Once you've identified an object, you
generalize it as a class of objects and define the kind of data it contains and any logic sequences
that can manipulate it. Each distinct logic sequence is known as a method. A real instance of a
class is called an “object” or an “instance of a class”. The object or class instance is what you run in
the computer. Its methods provide computer instructions and the class object characteristics
provide relevant data. You communicate with objects - and they communicate with each other.

Important features with OOP are:

e Classes and Objects
e Inheritance

e Polymorphism

e Encapsulation

Simula was the first object-oriented programming language. Simula was developed in the 1960s
by Kristen Nygaard from Norway.

Java, Python, C++, Visual Basic .NET and C# are popular OOP languages today.

187

188 18 Software Frameworks & Languages

Since Simula-type objects are reimplemented in C++, Java and C# the influence of Simula is often
understated. The creator of C++ (1979), Bjarne Stroustrup (from Denmark), has acknowledged that
Simula was the greatest influence on him to develop C++.

rs="1

18.2 Popular Programming Languagesistp

There exist probably thousands of different programming languages today. In Figure 18-1 we some
of them.

Programming Languages | peri

=

Ruby

;C/C++] i
S CH Visual |

_ Basic

' python | PHP |

Objective-C

MATLAB LabVIEW —

Figure 18-1: Programming Languages

Here is a list of some of the most popular programming languages in use today.

o (C,C++
o C#t
e Java

e \isual Basic

e Perl

e Python

e PHP

e JavaScript
e SQL

e MATLAB
e LabVIEW

Each of these programming languages has good and bad qualities and is preferable in different
situations. Some language is good to use when you need to communicate with a database, while

Part 3: Platforms &

189 18 Software Frameworks & Languages

others are good to use when you want to develop web applications, etc. So, in most situations you
probably need to know and use more than one programming language.

Some programming languages are interpreted (“interpreted language”), while others are compiled
(“compiled language”). Compiled languages need to be compiled and transform to “machine
code” before you can run the program. Interpreted languages translate the code step-by-step at
run-time.

Compiled languages are known in general to be faster than interpreted languages. Compiled
languages can also easily be compiled into executable programs that can run on their own, while
interpreted languages normally need to be run inside the development environment.

Visual Basic, C, C++ and C# are typically compiled languages, while Python, PHP, MATLAB are
typically interpreted languages.

Figure 18-2 shows the Top 20 list from RedMonk (this is just one of many similar lists).

1 JavaScript 11 Perl

2 Java " 11 Shell

3 PHP 7 \ 13 R

4 Python \ 14 Scala

5 Ci# P 15 Haskell

5 C++ Op > 16 Matlab

5 Ruby / O \ 17 Go

8 CSS /\\ 17 Visual Basic
9 C 19 Clojure

10 Objective-C 19 Groovy

http://redmonk.com/sogrady/2015/01/14/language-rankings-1-15/

Figure 18-2: Popular Programming Languages — Top 20

Below we will give a very short introduction to some of the most popular programming languages.

18.2.1 C

Cis a general-purpose computer programming language developed between 1969 and 1973 by

Dennis Ritchie at the Bell Telephone Laboratories for use with the Unix operating system.ists:

Cis one of the most popular programming languages of all time and there are very few computer

architectures for which a C compiler does not exist.

Part 3: Platforms &

190 18 Software Frameworks & Languages

C has greatly influenced many other popular programming languages, most notably C++, which

began as an extension to C.istp!

[l

st»C is a procedural language, i.e. no object-oriented programming. C is

a compiled language.stistp!

.......

18.2.2 C++

C++is a compiled, general-purpose object-oriented programming language. It is regarded as an
intermediate-level language, as it comprises a combination of both high-level and low-level
language features.

r

It was developed by Bjarne Stroustrup in 1979 as an extension to C.iskiC++ is one of the most
popular programming languages and its application domains include systems software (such as
Microsoft Windows), application software, device drivers, embedded software, high-performance

server and client applications, and entertainment software such as video games.

Several groups provide both free and proprietary C++ compiler software. stpistr,

........

18.2.3 C#H

CH is pronounced “see sharp”. C# is an object-oriented programming language and part of the
.NET family from Microsoft. The most recent version is C#4.5.1 and it is part of Visual Studio

2013.istiC# is intended to be a simple, modern, general-purpose, object-oriented programming
language. Its development team is led by Anders Hejlsberg.iste!

[l

CHis very like C++ and Java. C# is developed by Microsoft and works only on the Windows

[l

-

1.0 and C# 1.0 was released in 2002 as part of Visual Studio .NET 2002.ist.

[l

Visual Studio is the Integrated Development Environment (IDE) you use when programming in C#

L

and the .NET platform.istpiste!

“Hello World” C# Example:

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Ling;

using System.Text;

using System.Windows.Forms;

namespace WindowsFormsApplicationl

{

public partial class Forml : Form

{

Part 3: Platforms &

191 18 Software Frameworks & Languages

public Forml ()
{

InitializeComponent () ;

}

private void Forml Load(object sender, EventArgs e)

{

textBoxl.Text = "Hello World";

}

For an introduction to basic C#, please see [18].iske!

18.2.4 Java

Java is a programming language originally developed by James Gosling at Sun Microsystems (now
owned by Oracle Corporation) and released in 1995 as a core component of Sun Microsystems'
Java platform. The language derives much of its syntax from C and C++ but has a simpler object
model and fewer low-level facilities.

«

3, Java

——

Java is currently one of the most popular programming languages in use, and is widely used from
application software to web applications.ist-Java applications are typically compiled and it runs on
any Java Virtual Machine (JVM) regardless of the computer architecture. Java is a general-purpose
object-oriented. It is intended to let application developers “write once, run anywhere”.

A common IDE for programming with Java is the Eclipse IDE.istrJava and Eclipse are used to create
Android Apps.

18.2.5 Objective-C

Part 3: Platforms &

192 18 Software Frameworks & Languages

Objective-C is a general-purpose, high-level, object-oriented programming language that is based
on the C programming language.

It is the main programming language used by Apple for the OS X and iOS and their respective APIs,
Cocoa and Cocoa Touch.

Originally developed in the early 1980s, it was selected as the main language used by NeXT for its
NeXTSTEP operating system, from which OS X and iOS are derived.

Swift is the new programming language created by Apple (now open source) that is intended to
take over for Objective-C. Swift is now the preferred language when creating Apps for the iOS
platform and macOS.

18.2.6 Visual Basic

Visual Basic (VB) is the third-generation event-driven programming language and integrated
development environment (IDE) from Microsoft. The first version appeared in 1991. Visual Basic is

(AL

Visual Basic was derived from BASIC and enables the rapid application development (RAD) of
graphical user interface (GUI) applications, access to databases using Data Access Objects, Remote
Data Obijects, or ActiveX Data Objects, and creation of ActiveX controls and objects.

Scripting languages such as VBA (Visual Basic for Applications) and VBScript are syntactically like

el

[l

...........

18.2.7 Perl

Perl is a high-level, general-purpose, interpreted, dynamic programming language. Perl was
originally developed by Larry Wall in 1987 as a general-purpose Unix scripting language to make
report processing easier. Since then, it has undergone many changes and revisions and become

.......

.......

Part 3: Platforms &

193 18 Software Frameworks & Languages

18.2.8 Python

Python is an interpreted high-level programming language and object-oriented programming and
structured programming are fully supported.st»iThe reference implementation of Python (CPython)
is free and open source software and has a community-based development model. In addition,
Python has alternative implementations. isp:

@, python’

Python interpreters are available for many operating systems, and Python programs can be
packaged into stand-alone executable code for many systems using various tools.istiGuido van
Rossum is the creator of Python (1989).iskeitr!

Python example:

>>> x = int (input ("Please enter an integer: "))
Please enter an integer: 42
>>> if x < 0:

x =0

print ('Negative changed to zero')
elif x ==

print ('Zero')
elif x ==

print ('Single')
elses

print ('More')

More

Part 3: Platforms &

194 18 Software Frameworks & Languages

For more information about Python:

https://www.halvorsen.blog/documents/programming/python/

18.2.9 PHP

PHP is a general-purpose scripting language originally designed for web development to produce
dynamic web pages (server-side scripting). For this purpose, PHP code is embedded into the HTML

PHP can be deployed on most web servers and as a standalone interpreter, on almost every

operating system and platform free of charge.

(Ll

(Rl

Rl

LLLLLLL

18.2.10 JavaScript

JavaScript is an object-oriented scripting language that is dynamic, weakly typed. JavaScript is
primarily used in the form of client-side JavaScript, implemented as part of a web browser to
provide enhanced user interfaces and dynamic websites.

As in most scripting languages, types are associated with values, not with variables. For example, a
variable x could be bound to a number, then later rebound to a string.isteJavaScript uses syntax
influenced by that of C.

JavaScript copies many names and naming conventions from Java, but the two languages are
otherwise unrelated and have very different semantics.strlavaScript was first shipped in 1995.

JavaScript very quickly gained widespread success as a client-side scripting language for web

.......

Part 3: Platforms &

https://www.halvorsen.blog/documents/programming/python/
https://www.halvorsen.blog/documents/programming/web/php.php

195 18 Software Frameworks & Languages

18.2.11 SQL

SQL often referred to as Structured Query Language, is a database computer language designed
for managing data in relational database management systems (RDBMS).

SQL has become the most widely used database language today. All popular Database Systems

[l

el

2P IER,

Example of SQL Syntax:

insert into STUDENT (Name , Number, SchoolId)
values ('John Smith', '100005', 1)

select SchoolId, Name from SCHOOL
select * from SCHOOL where SchoolId > 100
update STUDENT set Name='John Wayne' where StudentId=2

delete from STUDENT where SchoolId=3

For more information about SQL, please see [19] and Chapter 26.
You may also see the following resource:

https://www.halvorsen.blog/documents/technology/database/

18.2.12 MATLAB

MATLAB (matrix laboratory) is a numerical computing environment and fourth-generation
programming language. Developed by MathWorks, MATLAB allows matrix manipulations, plotting

Rl L]

MATLAB is intended primarily for numerical computing. MATLAB is widely used in academic and
research institutions, but also in the industry.

MATLAB is an interpreted language. MATLAB is written in C and Java. MATLAB is a weakly

.......

In Figure 18-3 we see the MATLAB IDE.

Part 3: Platforms &

https://www.halvorsen.blog/documents/technology/database/

196

18 Software Frameworks & Languages

4\ MATLAB R2012b = 3] =
SHORTCUTS WVARIABLE ME L BES e S ®|Search Dacurmentatian .D
E E‘\}' i~ [l rerion &n Ee Cf, Mew Variable | Analyze Code [2=] E B} Preferences @ [—
[} Open Variable + {57 Run and Time (]l Set Path
New MNew Open ||| Compare Import Save = Simulink Layout Help = Request Support
Script - - Data Workspace L/ Clear Workspace = [’ Clear Commands ~ Library - S Paraliel = -
FILE VARIAELE CODE SIMULINK ENVIRONMENT RESOURCES
<= =3 L » ¢ » work » Energy » time_series_data * - B
Current Folder ® [Editor - working with _time series_data.m [Variables - dataACDT @ x
Nome
:' du=piy * [H dataACDT <18000:16 dataset>
“ ausmap.m 1 2 3 4 5 6 7 2 9
(A Aus‘tElecGl’id.png | Time VMBE VM7 VMB VM VM0 VAB VAT VAB
m AustSummerTime.... | | [634942..] 6.3264... 6.2900] [l Figure 2 =B =
)‘a Createfigure.m 2 634942 63224 6292?’ File Edit View Insert Tools Desktop Window Help el
&) datal.xlsx 3 634942.. 6.3181.. 62031 H S|k [R R T DE - |2 | IE)| = O
data2.xlsx 4 634942.. 6.3132... 6.2895 o \nterpolating Missing Data
2 data3.xlsx "5 634942.. 6.3113... 6.2867 : : : ® : ’
working_with_time_series_data.m |
Command History | Workspace ® [6 634942..| 6.3151..| 62851 600
Mame . Value K 634942... 6.3140... 6.2845 ; ; | d F ; H
500 : : R e R R RECEEEEEEEEE
T ans <20x4 de”| |8 634942... 6.3044... 6.2858) : : : | : :
[=lconn <Ix1 dat; Command Window 1 §4UU ”””””%' - '"””%””””""i "””””i'”””””’i””””””@
=l curs <1x1 stru z : : : ; :]
Eddata <28501x 100 6.278%¢ % 300
i datal <27001x. 103 =
fdataACDT = <18000x 200 i : 1 . :
¥l dataACDT_... «<1x3 log :] : | linear interp |
e e g fx- >>) | 1[][]»————————7—3 ,,,,, po,,,,, spline interp
Bl mm 3] H : : i | =—— pehip interp |!
Ready H curve fit |
0 1 1 1 | I I
1.95 2 2.05 21 215 22 2.25
Time (s)

Figure 18-3: MATLAB

For more information about MATLAB, please see [20].

MATLAB Training:

https://www.halvorsen.blog/documents/programming/matlab/

18.2.13 LabVIEW

LabVIEW is a graphical programming language.istriLabVIEW (short for Laboratory Virtual

Instrumentation Engineering Workbench) is a platform and development environment for a visual

programming language from National Instruments.istp!

LabVIEW was originally released for the Apple Macintosh in 1986 and it is commonly used for data
acquisition, instrument control, and industrial automation on a variety of platforms including

Microsoft Windows, various versions of UNIX, Linux, and Mac OS X.

LabVIEW

Part 3: Platforms &

https://www.halvorsen.blog/documents/programming/matlab/

197 18 Software Frameworks & Languages

In LabVIEW, you can create and run executable files. To do so you need to have the LabVIEW Run-

time Engine installed on the target computer.istrLabVIEW can be extended with additional modules

[l

and Toolkits. LabVIEW MathScript is an add-on which is a miniature version of MATLAB.

In Figure 18-4 we see a typical LabVIEW Program.

{3 3D Parametric Surface.vi Diagram * =]
File Edit Operate Tools Browse Window Help |P."i
@[] [2][ba]@]cs [130t Aeplcation Font__ |~][25|40 ~][0~] |u
-
f[False b]
3D graph 3D graph out
error in {no error) @I
Sas oo T E
] [True |

B wd CWPlots3D 5
Item
Item

error out

S+ CwPlota o]
Plot3DParametricSurface
P xMatrix

X matrix ::—'~ > yMatrix
y matrix [oei] —|—- If 5 ZMatrix
zmatrix | [pBL] f—|—= \j > wiMatrix

intensity data | [ost]

Add Intinisity Data to wMatrix

Figure 18-4: LabVIEW Program
For more information about LabVIEW, please see [21].
LabVIEW Training:

https://www.halvorsen.blog/documents/programming/labview/

18.3 Naming Convention

There is different name convention for how to specify your variables, classes and Methods, etc.

Camel notation:

For variables and parameters/arguments we normally use “Camel notation”.

Examples:

string myCar;
int number;
string backColor;

- In Camel casing the first letter of an identifier is lowercase and the first letter of each
subsequent concatenated word is capitalized.

Part 3: Platforms &

https://www.halvorsen.blog/documents/programming/labview/

198 18 Software Frameworks & Languages

Pascal notation:

For classes, methods and properties, we normally use “Pascal notation”.

Examples:

class Car

{
void ShowCarColor ()

{

}
}

- In Pascal casing the first letter in the identifier and the first letter of each subsequent
concatenated word are capitalized.

For Namespaces we use Pascal casing and a dot separator.

Examples:

System.Drawing
System.Collections.Generics

Controls:

For controls on your user interface we either use “Pascal notation” or “Hungarian notation”, but
stick to one of them!

Examples:

“Pascal notation”:

LoginName
LoginPassword

“Hungarian notation”:

txtName
txtPassword
1blName
btnCancel

Where “txt” means that it is a Text Control, “Ibl” a Label Control, “btn” a Button Control, etc.

Acronyms:

Casing of acronyms depends on the length of the acronym. All acronyms are at least two
characters long. If an acronym is exactly two characters, it is considered a short acronym. An
acronym of three or more characters is a long acronym.

In general, you should not use abbreviations or acronyms. These make your names less readable.
Similarly, it is difficult to know when it is safe to assume that an acronym is widely recognized.

Part 3: Platforms &

199 18 Software Frameworks & Languages

But if you must, the rules are as follows:

Short acronym Examples (two characters):

DBRate

A property named DBRate is an example of a short acronym (DB) used as the first word of a Pascal-
cased identifier.

ioChannel

A parameter named ioChannel is an example of a short acronym (10) used as the first word of a
camel-cased identifier.

Long acronym Examples (three or more characters):

XmlWriter

A class named XmlIWriter is an example of a long acronym used as the first word of a Pascal-cased
identifier.

htmlReader

A parameter named htmlReader is an example of a long acronym used as the first word of a
camel-cased identifier.

18.4 Defensive Programming

In programming error and exception handling is very important. C# has built-in and ready to use
mechanism to handle this. This mechanism is based on the keywords try, catch, throw and finally.

Exceptions are unforeseen errors that happen in your programs. Most of the time, you can, and
should, detect and handle program errors in your code. For example, validating user input,
checking for null objects, and verifying the values returned from methods are what you expect, are
all examples of good standard error handling that you should be doing all the time.

However, there are times when you don't know if an error will occur. For example, you can't
predict when you'll receive a file I/O error, run out of system memory, or encounter a database
error. These things are generally unlikely, but they could still happen and you want to be able to
deal with them when they do occur. This is where exception handling comes in.

18.4.1 Error Handling

Error handling is an important part of the coding process, to make the applications robust when
some unexpected things happens.

Part 3: Platforms &

200 18 Software Frameworks & Languages

Exception Handling:

When exceptions occur, they are said to be “thrown”. C# uses the keywords try, catch, throw and
finally. It works like this: A method will try to execute a piece of code. If the code detects a
problem, it will throw an error indication, which your code can catch, and no matter what

happens, it finally executes a special code block at the end.

The syntax in C# is as follows:

MyMethod ()
{
try
{
//Do Something that can cause an Exception
}
catch
{
//Handle Exceptions
}
finally
{
//Clean Up
}
}
Example:

public void WriteDagData (double analogDataOut)
{
Task analogOutTask = new Task();
AOChannel myAOChannel;

try
{

myAOChannel = analogOutTask.AOChannels.CreateVoltageChannel (

aoChannel,
"myAOChannel",

0,

5,
AOVoltageUnits.Volts
)

AnalogSingleChannelWriter writer = new

AnalogSingleChannelWriter (analogOutTask.Stream) ;

writer.WriteSingleSample (true, analogDataOut) ;

}
catch (Exception e)
{

string errorMessage;

errorMessage = e.Message.ToString();

Part 3: Platforms &

201 18 Software Frameworks & Languages

}

finally

{
analogOutTask.Stop () ;

}

18.5 Software Frameworks

Some popular software frameworks are:

* .NET Framework

* WPF (Windows Presentation Foundation)

* Silverlight (obsolete, but still in use many places)
* etc.

They will be discussed in more details below.

18.5.1 .NET Framework

The .NET Framework (pronounced “dot net”) is a software framework that runs primarily on
Microsoft Windows. It includes a large library and supports several programming languages which
allow language interoperability (each language can use code written in other languages). The .NET
library is available to all the programming languages that .NET supports. Programs written for the
.NET Framework execute in a software environment, known as the Common Language Runtime
(CLR), an application virtual machine that provides important services such as security, memory
management, and exception handling. The class library and the CLR together constitute the .NET

Framework.

18.5.2 WPF

Developed by Microsoft, the Windows Presentation Foundation (or WPF) is a computer-software
graphical subsystem for rendering user interfaces in Windows-based applications. WPF is part of
the .NET Framework

WPF is intended to take over for the traditional Windows Forms.

The graphical user interface in WPF is designed using XAML (Extensible Application Markup
Language). Following the success of markup languages for web development, WPF introduces a
new language known as eXtensible Application Markup Language (XAML), which is based on XML.
XAML is designed as a more efficient method of developing application user interfaces

Part 3: Platforms &

202 18 Software Frameworks & Languages

WinForms vs. WPF:

e WPF is the successor to Windows Forms

e Windows Forms is basically "dead" technology - it's maintained, but it's no longer
improved.

e WPF does not rely on Win32

e Inaddition to a Graphical Designer, the GUI can be created in a XML based language called
XAML (Extensible Application Markup Language)

e WPF is more flexible

e Both ASP.NET and Windows 8/Windows Store Apps use the same approach as WPF

e Visual Studio is created using WPF!

In Figure 18-5 we see the WPF Project Template in Visual Studio.

New Project ?

b Recent |‘NET Framewaork 4.5 '| Sort by: |Defau|t -| i |i= Search Installed Templates (Ctrl+E) P~
4 |nstalled c# - o .
| Windows Forms Application Visual C# Type: Visual C#
4 Templates &= Windows Presentation Foundation client
4 Visual C* ™ wpF application Visual C# application
Windows Store L
- c*
Windows E Console Application Visual C#
B Web
- . Cw
b Office/SharePoint EIES ! Class Library Visual C2
Cloud -
. c#
Reporting EIES ! Portable Class Library Visual C2
Silverlight -
Test 54 A " .
WPF Browser Application Visual C#
WCF <m».
Windows Phone ha]]])
Empty Project Visual C#
Workflow h'll
- re
Typescript = Windows Service Visual C#

I Other Languages

& Other Project T c*
ErErojRct Types ! WPF Custom Control Library Visual C#
Samples <m>
; [S . ,)
B Online =q WPF User Control Library Visual C#
< -
Click here to go online and find templates.
MName: WpfApplicationl
Location: |C\Work\Development\Visual Studie Online\Development\Code\Examples, -] Browse...
Solution: |Create new solution v|
Solution name: DesktopAppExample Create directory for solution

Add to source control

| oK | | Cancel

Figure 18-5: The WPF Project Template in Visual Studio

In Figure 18-6 we see an example of a WPF application in Visual Studio. In addition to the graphical
designer we can create and modify the GUI using XAML.

Part 3: Platforms &

203 18 Software Frameworks & Languages

> DesktopAppExample - Microsoft Visual Studio L3 Y6 | QuickLaunch (Ctrl+Q) P - B x
FILE EDIT VIEW PROJECT BUILD DEBUG TEAM DESIGN FORMAT TOOLS TEST ANALYZE WINDOW HELP Hans-Petter Halvorsen =
-0 B -2 RMP|?-C | psurr | \ o Gl | =
T e R !MainWindow.aml.cs ~ | Solution Explorer
- @l e-zund@ o &=
g Search Soluticn Explorer (Ctrl+) p-
5 Welcome! sfa] Solution 'DesktopAppExample’ (1 project)
g WpfApplication1
o Please enter your name: b &% Properties
E b =B References
h a¢] App.config
g b 5[Appaaml
p Label 4 5[MainWindow.xaml
= b a7 MainWindow.xaml.cs
3
i £
N EEETOEIEY Team Explorer
(100% -] 3
3 Design 1+ m[E[E] | Properties
H<Window x:Class="wpFfApplicationl.MainWindow" + Name <No Names> F IR
xmlns="http://schemas.microsoft. com/winfx/2006/xaml/presentation” - X
http://schemas.microsoft.com/winfx/2006/xaml" — Type Window
Title="Hello World!" Height:"zéﬁ" Width="587"> Search Properties P
B <Grid> A by: C < -
<Label Content="Welcome!" HorizontalAlignment="Left" Margin="19,10,8,0" VerticalAlignment="Top" Height="27" Width=" e 3 L S
<Label Content="Please enter your name:" HorirontalAlignment="Left" Margin="10,42,0,8" VerticalAlignment="Top” Rend b Brush
<TextBox x:Name="txtBox" Horizontalalignment="Left" Height="23" Margin="1@,73,@,8" TextWirapping="Wrap" Text="TextBo b Appearance
<Button x:Nam tnOK" Content="0K" HorizontalAlignment="Left" Margin="248,76,8,0" VerticalAlignment="Top" Width="7 G
<Label x:Name="1blName" Content="Label™ HorizontalAlignment="Left" Margin="10,120,0,0" VerticalAlignment="Top™ Widt 4 Comman
Content (Grid) -lim []
</Grid>
ResizeMode [Carkesize ~|m
ShowlnTaskbar o
SizeToContent [Manual ~|m
Title Hello World!]
Topmost (] o
WindowStartuplo.. [Manial ~|o
Windowstate [Nomal __ -|o
-

Ready

Figure 18-6: Creating WPF Apps in Visual Studio

Part 3: Platforms &

19 Software Architecture

When creating software, we use different architecture depending on the platform and the
purpose with the software.

In this document, we will focus on client-server, 3-tier architecture and creating and using Web
Services and APls.

Software Architecture

2-Tier
3-Tier: A way to structure your code
into logical parts. Different devices or Client-
S sothare modules can share the Sam?,,.,.x—n.‘,_,\..‘i\erver
Jeeeet s code. T
// \\\ / \
/ N . y / 8
Web .
| Services | \; S I‘|
A | Architecture |
I
%6 Good Software! Tier
o
Web Services: A standard -
way to get data over a
network/Internet using
standard Web protocols
(HTTP, etc.) APls API: Application Programming

Interface. Different devices or software
modules can share the same code.
Code once, use it many times

Figure 19-1: Software Architecture

In Figure 19-2 we see how a typical software application is interacting with the surrounding
environments, such as the users of the software and the underlying operating system (which is
also software) and hardware.

204

205 19 Software Architecture

Application

| Operating System

Hardware

Figure 19-2. Software Interaction with the Environment

Based on the fundamental interaction between the software and the environments we have
different kinds of software architecture.

Software Architecture Examples:

* Client—Server

* n-tier architecture, 3-tier architecture
* Model-View-Controller (MVC)

* Web Services

* Interfaces

* APIs

In Figure 19-3 we see some examples of different network and software architecture typically
used in software development.

Part 3: Platforms &

206

19 Software Architecture

Network/Software Architecture

| Presentation Layer

Q
g :
Client/Server Architecture 3 Layer Architecture SOA Architecture § j i e ‘
P v '§ ! t j
; @ <! 2 4
’ o { Data Access Layer] i
g [T
Mac 0S X ” - = I' . ' : | t
s g
=8 \\indows 8 B Virtualization! _
I VMware HyperV Data
] Source
£J WindowsAzure HTTP P
Clients ‘ s A Web | ASPnet @D
Ji The Cloud) S .
‘ rver
RDC/TeamViewer - Netwo rk /J e "ﬁ"?")
(Hardware + Software/ 7 Apache
“\’ 7/
\\\/\ \7/
Internet, Ethernet, TCP/IP, HTTP, VPN, POl‘t 1433 ﬁ
OP§ 11;tunneller Routers, Switches, Computers, Protocols, Smred Procedures > 51 server R
ortware - o
0OSl, XML, SOAP, etc. MQSQL
_— RDC/TeamViewer Data base Mor iaDB
Server A Server

== Windows Server 2012

Q ORACLE'

Figure 19-3: Network/Software Architecture Examples

19.1 APl

API - Application Programming Interface. An APl is a specification of how some software

components should interact with each other. Typically, it is a library with functions, etc. you can

use in your code.
Examples:

Windows API
Java API

But you can also create your own API that you use internally in the team or expose to others

Creating APIs is good practice and makes it easy to reuse your code in other components or

applications. If all the developers in the team create the same code without thinking of reusing

code from others or create code in such manners it can’t be used by others, the software project is

doomed to fail.

Part 3: Platforms &

207

19 Software Architecture

Software Design without APIs [22]:

Here are some pros and cons:

Agile — can serve as a starting point for API design.
No need to consider how code interfaces with other software.

Can be appropriate for small “dead end” projects.

Code has a limited (as opposed to general) functionality.

Pros:
e Fasttoimplement in small projects.
o
o
o

Cons
* Inappropriate for large projects.
* Code is not reusable.
* Code is hard to maintain/modify.
* Proneto errors and bugs.

Why a Good APl is hard to Design?

Here

are some exa mples:

Forces designer to anticipate future usage of code.
Requirements are incomplete (may never be complete).
Requires abstraction.

Requires modularization.

Requires skills in programming languages.

Requires code rewrites —time consuming and labor intensive.

Part 3: Platforms &

208 19 Software Architecture

HOW TO CREATE A STABLE API

AND WHAT'S THE
PARAMETER
"Map<Object, Object> ffu"
FOR?
w2t

geok & poke
P
cEn
wE o
MpR
m
B

L.

[http://geek-and-poke.com]

When an APl is used in a project, it

Allows to focus on the project.

Saves development time.

Reduces errors and debugging.

Facilitates modular design.

Provides a consistent development platform.

API driven design requires planning and programming skills. APl driven design is costly initially, but
it pays in the long run. So, obviously, creating APls is good software practice in most cases.

It is impossible to imagine how anyone would design a car today without taking advantage of
existing modules or vehicle subsystems — it is the same with software!

19.2 Client-Server

Client/server describes the relationship between two computer programs in which one program,
the client, makes a service request from another program, the server, which fulfills the request.
Although the client/server idea can be used by programs within a single computer, it is a more

Part 3: Platforms &

209 19 Software Architecture

important idea in a network. In a network, the client/server model provides a convenient way to
interconnect programs that are distributed efficiently across different locations.

19.3 Web Services

The “problem”: How do we share data between different devices in a network (see Figure 19-4)?

7Serr\7/er(s)

Firewalls

Security
R //” "\)//" “\\\.‘

/" Local Network/ /<
\ﬁ Internet

Clients

Routers/Switches, etc.

Database

Figure 19-4: Data sharing between devices in a network

Direct connection between the database and the clients that need the data is normally not
possible, due to security, compatibility issues, etc. (firewalls, hacker attacks, etc.). Direct
connection in a local network (behind the firewall) is normally OK — but not over the Internet (see
Figure 19-5).

Clients

Database

Figure 19-5: Limited access to the database in a network

Part 3: Platforms &

210 19 Software Architecture

The solution: Web Services. Web Services uses standard web protocols like HTTP, etc. HTTP is
supported by all Web Browser, Servers and many Programming Languages.

Today Web Services have been very popular. A Web service is a method of communications
between two devices over the World Wide Web, and makes it easy to share data over a network
or the internet.

A Web Service is:

e AWebAPI

e A Standard defined by W3C

e Cross-platform and Platform-independent Communication
e Distributed Application Development

Web Services can be implemented and used in most Programming Languages (C#/ASP.NET, PHP,
LabVIEW, Objective-C, Java, etc.)

Web Services uses standard Web technology (Web protocols) such as HTTP, REST, SOAP, XML,
WSDL, JSON, etc.

Internet
Web Service € p——> C(lients
- HTTP 4

Figure 19-6: Web Services
Web Services technology used in Web Services:
e HTTP - Hypertext Transfer Protocol
e XML — Extensible Markup Language
e WSDL - Web Services Description Language
e SOAP - Simple Object Access Protocol
e REST - Representational State Transfer

(we will not go into details)

Part 3: Platforms &

211 19 Software Architecture

A Web Service is typically deployed on a web server, similar as ordinary web pages, see Figure
19-7.

Client Client Client

Data
Data
¢ newo 5 \Neb Services
Web Services: . sy /;,,\7_,,/
* A Standard way to get data - Data
over a network/Internet
* Using standard Web

protocols Web Service Dgfa Normally you dont have
direct access to a

Server .
Web Server Ditabase Database over a '
D am— network, and espesially
‘ | | not over Internet
_/"

Figure 19-7: Web Service Infrastructure
We have 2 different types of Web Services:
* Web Services 1.0: SOAP Web Services
“Complex”
* Web Services 2.0: REST Web Services
* Lightweight and Flexible
* Anew and simpler version of WS
* All major WS on the Internet today use REST

In Figure 19-8 we summarize Web Services 1.0 vs. 2.0.

Part 3: Platforms &

212 19 Software Architecture

» “SOAP Web Services”

* Using the SOAP protocol (Simple Object Access
- Protocol)

* XML (Extensible Markup Language)

Web Services 1.0

A

* “RESTful Web Services”

* Using the REST protocol (Representational
State Transfer)

* Uses standard HTTP methods (GET, PUT, POST,
DELETE) (HTTP: Hypertext Transfer Protocol)

* Uses JSON (JavaScript Object Notation) or XML

Web Services 2.0

Figure 19-8: Different kind of Web Services

This document only describes the basic principles of Web Services. For practical code examples,
see the Tutorial “Introduction to Web Services” [23].

19.3.1 SOAP Web Services

In Figure 19-9 we see the different “layers” a “SOAP Web Service” consists of.

WSDL (API Description)

SOAP (Messaging)

XML (Data)

HTTP (Transport)

Figure 19-9: SOAP Web Services Architecture

XML:

XML stands for eXtensible Markup Language. XML is designed to transport and store data.

Below we see an XML document example.

Part 3: Platforms &

213 19 Software Architecture

<?xml version="1.0"?>
<note>
<to>Tove</to>
<from>Jani</from>
<heading>Reminder</heading>
<body>Don't forget me this weekend!</body>
</note>

19.3.2 REST Web Services

In Figure 19-10 we see the different “layers” a “REST Web Service” consists of.

p
REST (Messaging)
N
JSON/XML (Data)
HTTP (Transport)

Figure 19-10: REST Web Services Architecture

19.3.3 Creating Web Services with Visual Studio

Visual Studio has powerful features for creating Web Services (Figure 19-11).
3 ways to do it:

e ASMX Web Service (Traditional Web Service using SOAP)

e WHCF Service: A general approach used to create all kind of communication including web
services, both SOAP and REST

e ASP.NET Web API (The modern Web Service using REST, Web 2.0)

Part 3: Platforms &

214 19 Software Architecture

———— N—— 0
API

(Methods used by your Applications)

‘ Web Service

SOAP WS REST WS
ASP.NET

ADO.NET)

{ Stored Procedures \

lﬁ: sQL |
SQL Server

Figure 19-11: Creating Web Services using Visual Studio and ASP.NET

Below we see an example of a Web Service created with Visual Studio and ASP.NET:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Web;

using System.Web.Services;

namespace CalculatorWS

{
/// <summary>
/// Summary description for CalculatorWS
/// </summary>
[WebService(Namespace = "http://tempuri.org/")]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfilel 1)]
[System.ComponentModel . ToolboxItem(false)]

// [System.Web.Script.Services.ScriptService]
public class CalculatorWS : System.Web.Services.WebService
{

[WebMethod]
public string HelloWorld()
{

return "Hello World";
}

[WebMethod]

Part 3: Platforms &

215 19 Software Architecture

public double Add(double a, double b)
{
return a + b;

[WebMethod]
public double Substract(double a, double b)
{

return a - b;

[WebMethod]
public double Multiply(double a, double b)
{

return a * b;

[WebMethod]
public double Divide(double a, double b)
{

return a / b;

A Web Service can be accessed through a web browser (see Figure 19-12) or other clients.

e‘ 2@ nitp//localhost/ Calcula £+ & || @ Calculatorws Web service ‘ ‘

CalculatorWs -

The following operations are supported. For a formal definition, please review the Service Description.

© Add

* Divide

* HelloWorld
* Multiply

* Substract

This web service is using http://tempuri.org/ as its default namespace.
Recommendation: Change the default namespace before the XML Web service is made public.

Each XML Web service needs a unique namespace in order for client applications to distinguish it from other services on the Web. http://tempuri.org/ is available for XML Web services that are under development, but published
XML Web services should use a more permanent namespace.

Your XML Web service should be identified by a namespace that you control. For example, you can use your company's Internet domain name as part of the namespace. Although many XML Web service namespaces look like URLs,
they need not point to actual resources on the Web. (XML Web service namespaces are URIs.)

For XML Web services creating using ASP.NET, the default namespace can be changed using the WebService attribute's e property. The ice attribute is an attribute applied to the class that contains the XML Web
service methods. Below is a code example that sets the namespace to "http://microsoft.com/webservices/™:

c#

"heep:/fmicrosofs com/webservicas/"}]
[

Visual Basic

-) ")> Publi= Class MyWebSeswize
* implementation
End Class

r:/ /miczosots. com/weabasrricas/ ")]
ice 1

For more details on XML namespaces, see the W3C recommendation on Namespaces in XML.

For more details on WSDL, ses the WSDL Specification.

For more details on URIs, see REC 2396. &
< >

Figure 19-12: Web Service Example

A Web Service is typically hosted on a web server, e.g., IIS (Internet Information Services).

Part 3: Platforms &

216

19 Software Architecture

L] Internet Information Services (I1S) Manager = =
(G @ » MACWING » Sites + Defsult WebSite » CalculatorWs » | 5 | @ -
File View Help
‘Connections Actions
- E-‘D /Calculatorws Home
sl UES B Explore
-85 MACWING (MACWINS\Hans-Petter) = Ed ssions
a ans er, . dit Permissions...
: Filter: - W Go - \gShowAll | G by: ~ [=8]~
-_;*Appllcat\on Pools i ° % o roup by: Area g
a4 [&] Sites ASP.NET ~
4 @ Default Web Site = & r'\ q 3
1+ [aspnet_client % \\// “ = - LS E?_) Manage Application &
4 [CalculatorWs] NET NET NET Error NET NET Profile .MET Roles .NET Trust .NET Users e
- bin Authorizat.. Compilation Pages Globalization Levels Browse Application
= opi - Browse %80 (http)
oL obj A , p
1>~ | Properties ¥ ab) ki Y = Advanced Settings...
Application Connection Machine Key Pages and Providers Session State SMTP E-mail @ Help
Settings Strings Controls
s ~
] 5 &] I
B 9 |e 2 &€ B
Authentic.. Compression Default Directory Error Pages Handler HTTP Legging
Document Browsing Mappings Respon...
.
S o = =
= ol e E 8
MIME Types Madules Output Request SSL Settings
Caching Filtering
Management ~
Configurat...
Editor

Ready

[=] Features View | I Content View

Q.

Figure 19-13: Web Service hosted in IS

To use a Web Service, we need to add a Service Reference to the project where we want to
consume or use the Web Service (see Figure 19-14).

Part 3: Platforms &

217 19 Software Architecture

Add Service Reference ?

To see a list of available services on a specific server, enter a service URL and click Go. To browse for available
services, click Discowver.

Address:
http://localhost: 49679/ CalculatorWs.asmx W Go Discover |«
Services: Operations:
4 (&3 Calculatorw's @ Add
© Divide
@ HelloWorld
@ Multiply
@ Substract

1 service(s) found at address "http://localhost:49679/ CalculatorWs.asmx’,

Mamespace:
CalculatorWs

Advanced... Cancel

Figure 19-14: Add Web Service Reference in Visual Studio

Then we can consume the Web Service like this

CalculatorWS.CalculatorWSSoapClient myWS = new CalculatorWS.CalculatorWSSoapClient () ;

MessageBox.Show (myWS.HelloWorld()) ;

In this simple example, we just called the “HelloWorld” Web Service Method.

19.4 3-tier Architecture

In general, we have so-called n-tier architecture, but the most common is version is a 3-tier
architecture.

3-tier architecture is a client-server architecture in which the functional process logic, data access,
computer data storage and user interface are developed and maintained as independent modules
on separate platforms. Three-tier architecture is a software design pattern and a well-established
software architecture. Its three tiers are the presentation tier, application tier and data tier.

The 3 tiers or layers are as follows:

* Presentation Layer
* Business/Application Layer

Part 3: Platforms &

218 19 Software Architecture

* Data Access Layer

These layers may be on the same computer, but normally they are distributed on different

computers.

3 Layer Network/Software Architecture

ﬂ Presentation Layer \
. ' e i0oSs
£ . < I
&m Windows8 = = Windows 8
i

2 % Desktop Web Mobile
§
¥ a App API API App API App I
HTTP §
Client side Sl
Server side Clients are not allowed to directly communicate with the Database Server!
= ‘ H 7. (Data Access Layer J S
S | Mg WS:ASP.NET/PHP — — =
<, Kgp'n'e-t b - - k\, ' ;t;r;d Proceduirieis’ D ¢B1
A z 11IS/Apache I s tored Rrocedures SGL server
A SEe “
— é L Business Logic Layer J ' > Database MHSQRL
£ 2 Web Server / | Server
e o ‘ ‘J‘ ariaDB |
e y Ava :

Figure 19-15: Software Architecture
A short description of the different layers:

Presentation Tier:

This is the topmost level of the application. The presentation tier displays information related to
such services as browsing merchandise, purchasing and shopping cart contents. It communicates
with other tiers by which it puts out the results to the browser/client tier and all other tiers in the

network.

In simple terms, it is a layer which users can access directly such as a web page, or an operating

systems GUI

Application tier:

(Other terms used: Business logic, logic tier, data access tier, or middle tier) The application tier is
pulled out from the presentation tier and, as its own layer. It controls an application’s
functionality by performing detailed processing.

Data tier:

Part 3: Platforms &

219 19 Software Architecture

This tier consists of database servers. Here information is stored and retrieved. This tier keeps data
neutral and independent from application servers or business logic. Giving data its own tier also
improves scalability and performance.

Figure 19-16 shows a sketch of the typical logical layers or tiers in a 3-tier/layer architecture.

Presentation Tier ‘ PL
Business Logic Tier BL
I - Logic Tier
Data Access Tier DAL
A s —
Data Data Tier - DL

Source

Figure 19-16: 3-tier Architecture

Figure 19-17 gives an overview of the 3-tier architecture and gives a short description of the
different layers.

In the web development, 3-tier is often common, including the following

e A Web Server
e An Application Server
e A Database

Web Services could be used for communication between the different layers.

Part 3: Platforms &

220 19 Software Architecture

Presentation tier

The top-most level of the application | o™
is the user interface. The main function
of the interface is to translate tasks

and results to something the user can '

=GET SALES [| GET SALES
TOTAL

| Il 1 TOTAL SALES

understand.
A
Logic tier
This layer coordinates the
application, processes commands,
makes logical decisions and . GET LIST OF ALL a ADD ALL SALES
evaluations, and performs SALES MADE TOGETHER
calculations. It also moves and . e . A
processes data between the two
surrounding layers.
SALE 1
QUERY SALE 2
- SALE 3
Data tier SALE 4
Here infoermation is stored and retrieved
from a database or file system. The
information is then passed back to the
logic tier for processing, and then -
eventually back to the user. f
- —
—i. 1
Storage

Database

Figure 19-17: 3-tier Overview

In Figure 19-18 we see an example of 3-layer architecture software.

Part 3: Platforms &

221 19 Software Architecture

Clients

e = @M """"""""""""""""""""""""""

' b VisualStudio 5 LabVIEW Z—’ == ASPnet

[‘Web Browser

b - Visual Studio/C# - ASP.NET

: - WinForm/WPF - PHP . :

: Client#3 .« t

- LabVIEW . . -JavaScript, HTML : 8 Windows8 |

Client #1

- i0S (Xcode, Objective-C) §

Q0

- Android (Eclipse, Java) i
po— - Windows 8 (Visual Studio/C#) E
Web Services

Process o N
USB-6008 Internet
! Examples: . Information j
! i E Services (1IS) ;
f f 3 Layer - or Apache
i | ! Architechture e '

SQL Server (or MySQL,
SQLite, Oracle)
1|

mmg Windows Server 2012

Weather
Station

Figure 19-18: Example of 3-layer Architecture Software

Part 3: Platforms &

Part 4 : Management
and Development Tools

In this part, we give an overview of tools used (and needed) in modern software engineering, like
collaboration tools, source code control tools, programming platforms, frameworks and
languages, etc.

222

20 Project Management
System

With Project Management System (PMS) your Team can easily keep track of the development of
your project, from the early beginning to the end of the project. PMS is a modern and flexible Web
Application that handles all aspects of your project, from Requirements Analysis, Task
Management including Taskboard, Meetings (Notice of Meetings, Minutes of Meetings, etc.),
Discussions, Status Reporting, Issue Tracking and Management. PMS is the only tool you need to
handle all aspects of your Project Planning and Management.

Homepage:

https://www.halvorsen.blog/documents/projects/projects/project management system.php

Figure 20-1 shows the start page for the Project Management System.

‘& Project Management System

Project: Monitoring of Environmental and Health related Data in Grenland

& Hans-Petter Halvorsen @@ Logout %8 Discussions

& £= =

Dashboard Task Mangement Taskboard
Get an overview of your Project Manage all your Tasks within the Project Get Overview of your current Work
Requirements Tissue Fire Fighting
Functional and Non-Functional Requirements Track your Issues and wipe your Bugs away Start Fire Fighting and Fix your Bugs
o@e
="
Calendar Meetings Project Members

Calendar Activities, important Deadlines, etc. Upcoming Meetings. Schedule your Meetings Add or Edit Project Members

Figure 20-1: Project Management System

223

https://www.halvorsen.blog/documents/projects/projects/project_management_system.php

224 20 Project Management System

Below, some examples of features in PMS:

e Project Dashboard

e Project Resources

e Project Status and Reporting
e Risk Management

e Requirements Analysis

e Task Management

e Taskboard

e Bugs and Issue Tracking

e Meetings (Notice of Meetings, Minutes of Meetings, Notifications, etc.)
e Calendar

e Discussions

e Notifications

e Notes

PMS is well suited for projects developing some kind of software, but it can be used for other
projects as well. PMS follows modern Software Engineering principles using features from Agile
and Scrum. See my page about Software Engineering for more resources.

PMS is made from scratch using HTML, JavaScript, CSS, Bootstrap, PHP and MariaDB (MySQL). See
my page about Web Programming for more information about these technologies. Here you can
read more about Database Systems. PHP is used to create dynamic web pages where data is
typically stored in a database, like MariaDB (MySQL) or SQL Server. Another framework for
creating dynamic web pages is ASP.NET. The system is hosted on an Apache HTTP Server, but
other Cloud Hosting Services could have been used as well.

20.1 Features and Functionality

20.1.1 Project Dashboard

In the Project Dashboard you get a quick overview of "everything" in your project.

In Figure 20-2 you see a Dashboard example (a small part of it).

Part 4: Management and Development Tools

225 20 Project Management System

@ Project Dashboard

Project: Monitoring of Environmental and Health related Data in Grenland

O Risk & Reguirements == Task Management E Taskboard]-E Tissue I‘“_"I Meetings 2 Discussions A Home

& Hans-Petter Halvorsen

Monitoring of Environmental and Health related Data in Grenland

Project Description: Grenland is cne of the areas in Norway with the historically highest density of heavy industry and associated
emissions to the environment. What can we learn from the previous historical environmental issues in Grenland? How can we use
historical data on emissions and environmental exposure in Grenland to increase knowledge about environmental and health issues?

Project Start: 2018-08-31 | Project End: 2018-11-20 | Estimated Workload: 700h
Day: 32 | Days Left: 50 | Days in Total: 82 | Project Time Schedule: 33.0%

A Warning!

The number of work hours in the Taskboard (35 h) is lower than the minimum required work hours (+60 h) you need in order to be
finished with the project within the deadline! Please add more Tasks to the Taskboard.

Goto = Task Management or Ify Taskboard for more information and perform actions on these Tasks.

A Important!

The Project has 11 New ¥ Bugs.
The Project has 9 New Q Feature Requests.
The Project has 2 New @ Impediments.

Goto W Tissue or start 'r Fire Fighting for more information and perform actions on these Issues.

Figure 20-2: Project Dashboard

20.1.2 Taskboard

The Taskboard is a tool used in Agile/scrum to keep track of the work that shall be executed in a
software development project.

In Figure 20-3 you see an example of the Taskboard.

Part 4: Management and Development Tools

20 Project Management System

Taskboard

@ To Do

= Create an HADOOP server in
azure

Terje Eikerol

Medium Priority - Hours: 4h

= Fill MongoDB server with dummy
data

Jerund Martinsen

Low Priority - Hours: 2h

O In Progress

= Create a basic layout for the final
webpage

Slim Ayache

High Priority - Hours: 8h

= Start writing a Chapter about "Data
Sources"

Slim Ayache

Low Priority - Hours: 2h

+ Done

= "Read" Book written about the History
of Hereya

Terje Eikerol

Low Priority - Hours: 8h

= Create WEB app in Azure
Terje Eikerol
Low Priority - Hours: 1h

Total Hours: 9

— . : Total Hours: 10
= Go through recieved e-mails from

contact
Mahdi Khoshbakhtian
Medium Priority - Hours: 4h

= Group Contract Sign
Jerund Martinsen
High Priority - Hours: 1h

= Scrum Master Work
Slim Ayache
High Priority - Hours: 1h

Total Hours: 12

Figure 20-3: Taskboard

20.1.3 Risk Analysis

Hazard Identification and Risk Analysis is an important part of any project in the planning and
start-up phase. It is important to identify what can go wrong and find good treatments to solve
these issues.

Risk Analysis and Management is the identification, evaluation, and prioritization of risks.

In Figure 20-4 you see an example of Risk Analysis.

Part 4: Management and Development Tools

227 20 Project Management System

O Risk Analysis

Project: Monitoring of Environmental and Health related Data in Grenland

@ Dashboard

Hazard ldentification and Risk Analysis

Identify and get an overview of the Risks in this Project.

Below you find a list of identified Risks:

Risk Criticality Severity Probability Action
@ Hacker Attack 100% High Very Likely W
@ Loss of Data 100% High Very Likely w
. Problems with maintaining the system in the future 100% High Very Likely m
. The System will not be finished within the deadline 83% High Likely m
@ Not getting real Data from different Companies or Organisations 83% Medium Very Likely Ty
@ internal Communication failure 67% Medium Likely]
@ Personal Data wil get in the wrong hands 67% Medium Likely T
’ We choose to use the wrong Technology and Tools 50% Medium Unlikely Ty
. Not able to install the Software at Porsgrunn Kommune 33% Low Unlikely m

Figure 20-4: Risk Analysis

20.1.4 Bugs and Issue Tracking

Here you can report and track Bugs and other Issues.

In Figure 20-5 you see an example of this feature.

Part 4: Management and Development Tools

228

20 Project Management System

<0
Tissue - Monitoring of Environmental and Health related Data in Grenland (1)

X¥ Tissue

Track your Issues and wipe your Bugs away

Bugs and Issues in your Project

Search for existing Issues or create new Issues.

Search
Select proper search critera;:
Software:
Report
Issue Type:
Feature Request
Status:
<All>
Assigned Person:
<All>
Regisration Person:
<All>

List of Issues

Below you find Issues that fulfills the search criteria above:

Issueld Issue Title

@ Dashboard == Task Management E Taskboard A" Fire Fighting </> Software

Multiple Bugs Multiple Feature Requests

“

“«r

>

<«

<«

Priority Status Action

O 126 Add some text about ISO in context of your project and the system you are creating Medium @]ﬁ[

New

Figure 20-5: Bugs and Issues

20.1.5 Meetings

The system keep track of all the meetings carried out in a project, including Notice of Meetings,
Minutes of Meetings, Notifications, etc.

In Figure 20-6 you see an example of this feature.

Part 4: Management and Development Tools

229 20 Project Management System

[™) Meetings

Below you find a list of upcoming and some of the previous meetings. You can schedule Meetings, write or see Meeting Requests and Minutes of Meetings.

Meeting Location Date & Time Action

¥ Meeting with the supervisor #4 C-139a 2018-10-05 10:30 m 9 Add to Calendar
() Meeting with Supervisor #3 C-139a 2018-09-28 10:30 m

(*) Demo and Presentation #1 B-1007 Library 2018-09-26 14:00 m

{4 Internal mesting #3 B-1008 Library 2018-09-26 08:00 m

(™ Internal mesting #2 Cafe Henrikke 2018-09-24 16:00 m

New Meeting

Goto the I‘:"I Meeting Manager to see all previous Meetings and see previous Minutes of Meetings.
N

Figure 20-6: Meetings

In Figure 20-7 you see an example of a Notice of Meeting/Minutes of Meeting:

Meeting

) Meeting

Project: Monitoring of Environmental and Health related Data in Grenland

@ Dashboard m Meeting Manager

Meeting Information
Below you find detailed information about the Meeting:
Meeting Title*:

Project Meeting #8

Meeting Content:

Agenda:
1. Individual Status Reports (3 Questions). Make sure to shortly answer (keywords) these 3 questions in advance using PMS. Create the necessary Tasks using the
Task Manager (some of these may be added to the Taskboard in #7)
2. Project Status.
- The Project Manager/Scrum Master should write a short (keywords) Status Report in advance using PMS
- In the Meeting the Project Manager gives a short Overview of the Project Status, Progress, etc. Is the Project on Track? Why/Why Not?
- Open the Task Management to get an overview of Tasks. We have the following Tasks: Not Started, To Do, In Progress, Done, Approved.
3. Make an overview of what has been discussed with Martin and Tone and find out what should be done in relation to that.
4. Finishing Previous Iteration. See the Taskboard. Go through and Approve Done Tasks. Why have To Do and In Progress Tasks not finished?
5. Follow up the previous Status Meeting. Read the Minutes of Meeting and see if there are some things that we agreed on but have not done. Make new Tasks if
necessary.
6. Bugs and Features. Go through registered Issues, make Priorities and Approve fixed Issues. Use the Fire Fighting feature in PMS.

E E T P S Y R T S U ST ST SO SN P - TR SO DU T S TR R 4

Meeting Location:
C-139a

Meeting Date: | 2018-11-02 Start Time: | 10:30 End Time: | 11:30

Summary:

Teknisk ukeblad. Articles
- Oslo far fleksibel IKT platform

Figure 20-7: Notice of Meeting/Minutes of Meeting

Part 4: Management and Development Tools

230 20 Project Management System

20.1.6 Project Status

The system keep track of all the individual status for each member of the development team as
well as the overall status of the project.

In Figure 20-8 you see an example of this feature.

(i) Project Status

Project Status. What is the current status for your project? Is your Project on track? (What is on track, What is not on Track?), etc. Please update the overall
Project Status on a regular basis (e.g., weekly updates). This shoud be done by the Project Manager before the Weekly Status Meetings. Just a small reality
check: According the Project Schedule, you should now be finished with 41.5% of the Project {(#DaysToday/#DaysTotal)*100%}. Are you on track? See Tasks
Overview below.

Project Time Schedule:

Status Reports:

Date Status Information Action

2018- No response from contacts. Decided to use mock data for development. Database solution has been selected (MongoDB and HADOOP).
09-26 Report has been updated. Several tasks have been created, more to come. Website GUI design is in progress. Requirements have been
evaluated and risks identified. Next iteration should create mock data, begin coding, revisit contacts, start analysis process.

2018- The Structure of the project report is being formed. Initial contacts with external parties have been made. We have a good knowledge what
09-21 has been done before and we know the history of the scope of the project (Hera

2018- Report Template created, Dropbox folder created etc
09-14

2018- Project Kick-off and Start-up (Week 36) Initial Meeting with Supervisor Initial Meeting with Customer Get Overview, create Requirements, etc.
09-04

Figure 20-8: Project Status

Individual Status Report:

The Project Manager or the Scrum Master, etc. can report the overall Project Status as shown
above. In addition, each project member (in the Development Team) can add Individual Status
Reports.

In Figure 20-9 you see an example of this feature.

Part 4: Management and Development Tools

231 20 Project Management System

mBIog =

1 Individual Status Reports

Each Project Member needs to answer 3 Questions. Make sure to shortly answer (keywords) these 3 questions before the Status Meeting. Then make sure to also
create the necessary Tasks using the = Task Management (some of these Tasks may then be added to the Taskboard later).

For more details, see the 1 Individual Status Reports page.
3 Qustions:

Q1. What have you done Last Week?

Q2. What shall you do this Week?

Q3. Any Problems or Impediments?

Latest Status Reports:
Week 44
a (2018-11-02 11:07)

Q1. Created machine learning chapter. Read up on ML techniques, how they work, what can be applied to this project. Written into chapter, along with
suggestions for the system.

Q2. Continue on ML chapter, continue with the request regarding M.

Q3. Difficult to find out which ML applications that would be best. Maybe best with MI on the data, not meta-data, but most difficult to implement(when we have
no data). |

& (2018-11-02 08:38)
& (2018-11-01 22:34)

& (2018-11-01 21:22)

Week 43

& (2018-10-25 23:55)
& (2018-10-25 22:35)
& (2018-10-25 21:01)

& (2018-10-25 20:52)

Figure 20-9: Individual Status Reports

20.1.7 Notifications

On top of the Dashboard (Notification Center) the user gets different kinds of notifications.

In Figure 20-10 you see an example of this feature.

Part 4: Management and Development Tools

232 20 Project Management System

A Warning!

The number of work hours in the Taskboard (43 h) is lower than the minimum required work hours (+60 h) you need in order to be finished with the
project within the deadline! Please add more Tasks to the Taskboard.

Goto == Task Management or DY Taskboard for more information and perform actions on these Tasks.

A Warning!
You have no "In Progress" Tasks in the Taskboard - Please start Working!

Goto == Taskboard for more information and perform actions on these Tasks.

A Warning!
You have Less Work Hours (Oh) on the Taskboard than the expected Work Hours (4h) this Week - Please add more Work!

Goto = Taskboard for more information and perform actions on these Tasks. You can also Set Individual Workload.

A Important!

The Project has 9 New 13 Bugs.
The Project has 17 New Q Feature Requests.
The Project has 0 New @ Impediments.

Goto W Tissue or start T Fire Fighting for more information and perform actions on these Issues.

Figure 20-10: Notifications
The user gets 3 different types of Notifications:

e "Information" Notifications (Blue Color) - If you have a Meeting, etc. today, you will get an
"Information" Notification

e "Warning" Notifications (Yellow Color) - If you haven’t enough workload in current
iteration, you don’t have Tasks in the Taskboard, etc., you will get a "Warning" Notification

e "Important" Notifications (Red Color) - If someone has added Bugs, etc., for modules or
software that you are responsible for, you will get an "Important” Notification

20.1.8 Notes

You can organize your Notes into different Groups or Categories. With Notes you can create Text,
Tables, Hyperlinks. You can format your Text using Headers, Bold, italic, you can also create
Bulleted Lists and Numbered Lists. You can also Print out your Notes or create a PDF file.

In Figure 20-11 you see the Notes Manager.

Part 4: Management and Development Tools

233 20 Project Management System

a

Notes-Monitoring of Environmental and Health related Data in Grenland

[J Notes

Project: Monitoring of Environmental and Health related Data in Grenland

@ Dashboard /ﬁ‘ Home

Note Group:
<All> s
Note List
Note Date Modified Modified By Action
How to apply Machine Learning in this project 2018-11-16 11:25 Hans-Petter Halvorsen -
Project Description 2018-11-16 11:20 Hans-Petter Halvorsen -

Figure 20-11: Notes

In Figure 20-12 you see an example where you write a new Note.

Part 4: Management and Development Tools

234 20 Project Management System

2 Edit Note

Project: Monitoring of Environmental and Health related Data in Grenland

@ Dashboard D Notes

Edit Note

Please update information about the Note:

Note Group™*:

>

Project Management
Note Title™:

Project Description

Note Content:

Heading 1 v B I ZiZ &k @ By < <

FM4017 Project

Title: Monitoring of Environmental and Health related Data in Grenland from a Historical perspective

USN supervisor: Hans Peter Halvorsen

External partner: Heraya industripark, Sykehuset Telemark, Porsgrunn kommune, Folkehelseinstituttet, Miligdirektoratet og Prosjekt
kompetansetjenester miljg og helse.

Task background:

Grenland is one of the areas in Norway with the historically highest density of heavy industry and associated emissions to the environment. Located
in the south-eastern part of the county, Grenland is composed of the municipalities Skien, Porsgrunn, Bamble, and Siljian. Throughout the last 50
years, the awareness of emissions and the effects of these has become increasingly significant. Today, emissions from most sources are severely
limited by regulations, industry's own awareness of effects and responsibility, as well as through the general public's focus on the right to a safe and
healthy environment. Equally, new environmental challenges are constantly evolving, and existing knowledge and experience are important for
meeting them in a good way.

Figure 20-12: Creating a Note

Part 4: Management and Development Tools

21 Integrated Development
Environment (IDE)

What is an IDE? What is the difference between an IDE and a Programming Language?
Popular IDEs:

e Visual Studio

e Xcode

o Eclipse

e Android Studio

21.1 Visual Studio

Microsoft Visual Studio (see Figure 21-1) is an integrated development environment (IDE) from

Dd Test (msve-11.0) - Microsoft Visual Studio Quick Launch (Ctrl+Q) P - 0O X
FILE EDIT VIEW PROJECT BUILD DEBUG TEAM SQL TOOLS TEST ANALYZE WINDOW HELP
S0 - B - - - P Local Windows Debugger ~ Win32 v Debug ~ A _. LI B B
5 ; . .
§ Tasklist v B X Testcpp* ¥ X ~ Solution Explorer > o x
E Comments < (Global Scope) o 2 &l e-reai@m o
5 N 2 i & B/
! Descript File Line 7/ Name . Test.cpp Search Solution Explorer (Ctrl+i) P~
// Author : & Solution Test (msvc-11.0)' (1 project)
// Version : 4 [% Test (msvc-11.0)
// Copyright : Your copyright notice b & External Dependencies
// Description : & Include
" & Resources
. . 4 S
F#include <iostream> ? :uTm:t
I_uinclude <thread> S
@ main()
using namespace std; @ worker()
Svoid worker() {
cout << "Hello from worker"” << endl;
Zint main() {
thread t(worker);
t.join();
return 0;
}
Output v R X
Show output from: Build - £ ra
> — Build started: Project: Test (msvc-11.8), Configuration: Debug Win32 ------ o
1> Test.cpp
1> stdafx.cpp
1> Generating Code...
1> Test.vcxproj -> E:\Temp\Test\Debug\Test (msvc-11.8).exe
========== Build: 1 succeeded, @ failed, @ up-to-date, ® skipped ==========
Output Error List Find Results 1

Figure 21-1: Visual Studio

235

236 21 Integrated Development Environment (IDE)

It can be used to develop console and graphical user interface applications along with Windows
Forms applications, web sites, web applications, and web services in both native code together
with managed code for all platforms supported by Microsoft Windows, Windows Phone, Windows
CE, .NET Framework, .NET Compact Framework and Microsoft Silverlight.

A simplified version of Visual Studio has also been released on MacOS.
Visual Studio Code is also an alternative.

For more information about Visual Studio and C#, see [18].

21.2 Visual Studio for Mac

A simplified version of Visual Studio has also been released on MacOS. Many of the features from
the Windows edition are not supported, while ASP.NET core is fully supported, which is a new
cross-platform version of the ASP.NET framework.

For more information:

https://www.visualstudio.com/vs/visual-studio-mac/

21.3 Visual Studio Code

An open source and cross platform (Windows, MacOS and Linux) and simple and very downscaled
version of Visual Studio. It is very easy to use, it has IntelliSense, etc. Everything is done in code,
you cannot create your user interface graphically like you can do in Visual Studio. In Visual Studio
Code is the code in focus.

For more information:

https://code.visualstudio.com/

21.4 Xcode

Xcode (see Figure 21-2) is the IDE created by Apple for developing software for Mac OS X and the
iOS platform (iPhone, iPad).

He programming languages used within the Xcode environment is Objective-C.

Objective-C is a general-purpose, high-level, object-oriented programming language that is based
on the C programming language.

Part 4: Management and Development Tools

https://www.visualstudio.com/vs/visual-studio-mac/
https://code.visualstudio.com/

237 21 Integrated Development Environment (IDE)

It is the main programming language used by Apple for the OS X and iOS and their respective APlIs,
Cocoa and Cocoa Touch. Apple released a new programming language, called Swift. Swift has now
replaced Objective-C as the official language for iOS and Mac programming.

Originally developed in the early 1980s, it was selected as the main language used by NeXT for its
NeXTSTEP operating system, from which OS X and iOS are derived.

- XeX¢) [helloWorld_01.xcodeproj — [ViewController.xib %
N =N — =]
(») () [nelioNord 01 108 Device o~ [build Succeeded | 2012.11.13 at 16:09 ‘ [EE=) ()
Run Stop Scheme Breakpoints Editor View Organizer
|Bm|m ® A = » 8 [wi < > |[helowordo1) () |4 | ViewConwollerxb Engiish)) | |view | & | 4 > | i) [h| ViewController» [€ @interface viewController |4 2 > @ & D|Be|
=, helloworld_01 77 ¥ Quick Help.

¥ B3 target, ios soK 6.1 7/ ViewController.h

7/ helloWorlg_01
7"
7/ Created by Hans-Petter on 10/31/12.
7/ Copyright (c) 2012 Hans-Petter. ALL rights reserved.
"
#inport <UIKit/UIKit.h>
ain
) ¥
- (IBAction)button: (id)sender;
end
D {}| s =
[[Jl] Obiects BIEE
Label
Label Label - Avariably sized amount of static text.
Press Me

- Displays multiple segments, each of which functions

Jays editable text and sends an actian message to a target

Text play:
Text object when Retus tapped.

a continuous range of values and allows the selection of a

wing the boolean state of a value. Allows

Switch - i
tapping the

Activity Indicator View - Provides feedback on the progress of a task or
proces: n duration.

ol to toggle the

dot for each open page in an application and
tion through the pages.

©

tlo@de

Figure 21-2: Xcode

21.5 Eclipse

Eclipse (see Figure 21-3) is a multi-language Integrated Development Environment (IDE). It is
written mostly in Java. It can be used to develop applications in Java, C, C++, JavaScript, Perl, PHP,
Python, Ruby, etc.

Part 4: Management and Development Tools

238

21 Integrated Development Environment (IDE)

P

P - e B o -
File Edit Run Source MNavigate Search Project Refactor Window Help
- a a 2 3 - i w
i BRld $-0-@- BFG- SO S P AJeE Al - 2 (8 ava)
% PackageBxp 52 g Hierarchy| = (T3] Snakejava 2 = 8§ TaskList 32 =0
=N @ * Copyright (C) 2007 The Android Open Source Project[] - =
= Snake > %~ ®
=) Android 20 package com.example.android.snake;: O-%-IxBE &
i 3 sic ; X ot 4
R #import android.app.Activity;
H} com.example.android.snake L Find » Al b Activat.
Snakejava
@ £ = (2 Uncategorized
9] SnakeView.java * Snake: a simple game that everyone can enjoy.
[J] TileView,java
28 gen [Generated Java Files] # This is an implementation of the classic Game "Snake", in which you contral a
2 assets * serpent roaming around the garden locking for apples. Be careful, though,
e res * because when you catch one, not only will you become longer, but you'll move
ests = aster. unning into yourse or the wa 3 Wi {31 the game.
(= test £ R i 1f I 11s will end ti B
|a AndroidManifest.xm! * o= Outline =3 : =]
default.properties i’) o AR T e w T
public class Snake extends Actiwvity {
com.example.android.sr
private SnakeView mSnaksView; = import declarations
@ Ssnake
private static String ICICLE KEY = "snake-view"; = mSnakeView : Snak
o 5 ICICLE_KEY : String
= fex © . onCreate(Bundle) -
* Called when Rctivity is first created. Turns off the title bar, sets up © . onPause() : void
* the content views, and fires up the SnakeView. @ o onSavelnstanceStat
= S
4 » < . 3
[2 Problems 2 - @ Javadnc] =8 Declaratmn] =] (on;nle} ¢~ =08
0 items
=
Description Resource Path Location Type
ukd Project 'Snake' is missing required source folder: 'gen’ Android SDK Content Loader

Figure 21-3: Eclipse

Eclipse is the main IDE used for Android programming. Then you will need the Android SDK plug-

in.

Eclipse is available on Windows, Mac and Linux.

21.6 Android Studio

Google has released a new IDE for Android development called Android Studio (see Figure 21-4). It

is created to make it easier to develop Android Apps.

Android Studio is available on Windows, Mac and Linux.

Part 4: Management and Development Tools

239 21 Integrated Development Environment (IDE)

‘@00 Android Studio

P- N
l@l Welcome to Android Studio

Recent Projects Quick Start

|
Eu Mew Project...
[P

| E'i: Import Project...
No Project Open Yet

ED Open Project

'r Check out from Version Control
" Configure
£ conts

rE‘? Docs and How-Tas

Android Studio 0.3.2 Build 132.893413. Check for updates now.

Figure 21-4: Android Studio

Part 4: Management and Development Tools

22 UML Software

There exist hundreds of different software for creating UML diagrams, here we mention just a few:

e \Visio

e Enterprise Architect
e StarUML

e Rational Rose

e etc.

22.1 Visio

In Figure 22-1 we see the available UML diagram in Visio.

ot -
=
; - == ® , H=m
.- =1 =
1) =
= - =) = y
e o — ¢ = = TN

1Y 1X Dt Momion B Uaecner A, v

Figure 22-1: UML Diagrams in Visio

Microsoft no longer has focus on UML software. First, they removed the UML modelling in Visual
Studio. The UML in Visio is cleaned down to a minimum. So in general, | will not recommend using
Visio for UML modelling anymore.

240

241 22 UML Software

22.2 StarUML

StarUML is probably one of the best UML tools today. StarUML is cross-platform, which makes it
possible to use it on Windows, Linux and macOS. You can evaluate for free without time limit.

Figure 22-2 show the StarUML software.

« Examples.mdj — StarUML

class Library Domain Model

Author

+itle: String) | +name: String

| +summary | +" | +biography: String
+publisher
+publication date
+number of pages
+language

«enumeratio
«use»

Active
Frozen
Closed

«entity»

Book I
sl 0.12 +number {id}
+barcode: String[0..1] {id} +history: History[0..*]
+tag: RFID[0..1] {id} +reserved +opened: Date
+isReferenceOnly 0.3 +state: AccountState | +account

+accounts

Diagram Thumbnails

Classes (Advanced)

Packages

Composite Structure Abstract Factory Desigrf] Library Domain Mode! [JJi§ StandardProfileL2 Robustness Stereotyp il StandardProfileL3

Figure 22-2: StarUML
Web Site:

http://staruml.io

Download:

http://staruml.io/download

Part 4: Management and Development Tools

http://staruml.io/
http://staruml.io/download

23 Source Code Control (SCC)

23.1 Introduction

What is it Source Code Control (SCC) or a version control system? A version control system keeps
track of all work and all changes in a set of files. It Allows several developers (potentially widely
separated in space and time) to collaborate.

In this chapter, we will give a short overview of some of the most popular source code control
(SCC) systems on the market today.

Here is a list with some of the most popular SCC systems on the market today:

* Azure DevOps

* CVS
* SVN (Subversion)
* Git

e Mercurial

* Bazaar

* LibreSource
* Monotone
* BitKeeper

The focus will be on Azure DevOps from Microsoft because this software is tightly connected to
Visual Studio. In addition, it has lots of other features in addition to SCC.

Typical SCC Features:

e Checkout, Check-in/Commit

e Branching, Merging

e File Locking (avoid concurrent access)
e Label/Tag

e Change/Change List

e Conflict

e Revision, Iteration
We have two main kinds of SCC systems:

e Centralized/client—server architecture
e Distributed Version Control System (DVCS)

242

243 23 Source Code Control (SCC)

In Figure 23-1 we see an overview of which architecture the different SCC systems are using.

SCC

Centralized DVCS

TFS Git

Mercurial
CVS

Bazaar

SVN | | _ Monotone

LibreSource BitKeeper

Figure 23-1: SCC Architecture

Centralized/Client-Server architecture:

A server stores the current version(s) of a project and its history, and clients connect to the server
to “check out” a complete copy of the project, work on this copy and then later “check in” their
changes.

Distributed Version Control System (DVCS):

With a distributed version control system, there isn’t one centralized code base to pull the code
from. Different branches hold different parts of the code. Git is a DVCS. Other version control
systems, such as SVN and CVS, use centralized version control, meaning that only one master copy
of the software is used. DVCS systems use a peer-to-peer approach.

In some cases, the SCC system is integrated in a so-called Application Lifecycle Management
system.

Application Lifecycle Management (ALM) systems are systems that take care of all aspects in
software development from planning, requirements, coding, testing, deployment and
maintenance.

ALM is short for Application Lifecycle Management. An ALM tool typically facilitate and integrate
things like:

e Requirements Management

Part 4: Management and Development Tools

244 23 Source Code Control (SCC)

e Architecture

e Coding

e Testing

e Bug Tracking

e Release Management
e etc.

23.2 Azure DevOps

Azure DevOps an Application Lifecycle Management (ALM) system, i.e., the system takes care of
all aspects in software development from planning, requirements, coding, testing, deployment
and maintenance.

Azure DevOps is a product designed specifically for software engineering teams with developers,
testers, architects, project managers, etc.

Azure DevOps is a Source Code Control (SCC), Bug Tracking, Project Management, and Team
Collaboration platform. Azure DevOps is tightly integrated with Visual Studio as Microsoft is the
vendor of both Visual Studio and Azure DevOps. For more information, see [24].

Azure was previously called Team Foundation Server (TFS), then it was renamed to Visual Studio
Team Services (VSTS). No it has again changed name to Azure DevOps.

Here are some main features:

e SDLC Management (SDLC — Software Development Life Cycle)

e Software Team Collaboration

e Source Code Management

e Supports Agile, Scrum, CMMI

e Integrated Test Tools

e Automated Builds

e Builtin Team Foundation Version Control (TSVC) + Support for Git repositories
e Built-in support for Azure DevOps in Visual Studio (Team Explorer)
e Plug-in for Eclipse (Team Explorer Everywhere)

e MSSCCI Provider for other IDEs like LabVIEW

e etc.

we will go through Azure DevOps in more detail in a later chapter.

23.3 SVN

Part 4: Management and Development Tools

245 23 Source Code Control (SCC)

SVN or Subversion uses an Open Source License. SVN was established in 2000. Subversion is
probably the version control system with the widest adoption today. Many different Subversion
clients are available (Tortoise SVN, Mac: Versions, Xcode (built-in support for SVN)).

SVN uses a Centralized/Client—Server architecture.

23.4 CVS

CVS, or Concurrent Versions System was established between 1986-1990. It is free of charge. CVS
uses a client—server architecture. It is widely supported in different IDEs (Eclipse, Xcode, etc.).

23.5 Git

Git has become very popular today. Git is a Distributed Version Control System (DVCS). It was
initially designed and developed by Linus Torvalds (Linux Guru) in 2005. Git is free of use.

23.6 Others

Above we have discussed the most popular SCC systems today. Here are some other systems as
well:

* Mercurial

* Bazaar

* LibreSource
* Monotone
* BitKeeper

Look them up if you are interested!

23.7 Cloud-based SCC Hosting Services

For those who don’t want to install their own SCC repository in their own network, can use the
services in the cloud, either for free or for monthly payments.

Below we list some popular SCC hosting services:

e Azure DevOps Services (formerly known as Visual Studio Team Services)
e GitHub
e Bitbucket

Part 4: Management and Development Tools

246 23 Source Code Control (SCC)

23.7.1 Azure DevOps Services

Azure DevOps Services is an online SCC hosting service based on the Azure DevOps Server.
You can either use the built-in SCC repository (called TFVC) or a Git repository.

You can use this solution for free for up to 5 users, then you need to pay a monthly fee for
additional users.

Web site: www.visualstudio.com

23.7.2 GitHub

GitHub uses (as the name says) a Git repository.

Web site: www.github.com

GitHub is now part of Microsoft.

23.7.3 Bitbucket

With Bitbucket you can either use a Mercurial or a Git repository. It is free to use for 5 users.

Web Site: www.bitbucket.org

Part 4: Management and Development Tools

http://www.visualstudio.com/
http://www.github.com/
http://www.bitbucket.org/

24 Bug Tracking Systems

A software bug is an error, flaw, failure, or fault in a computer program or system that produces
anincorrect or unexpected result, or causes it to behave in unintended ways

They found a bug (a moth) inside a computer in 1947 that made the program not behaving as
expected. This was the “first” real bug.

A “bug tracking system” or “defect tracking system” is a software application that is designed to
help keep track of reported software bugs in software development efforts.

Having a bug tracking system is extremely valuable in software development, and they are used
extensively by companies developing software products.

{ U
BUG FEATURE

Here are some popular Bug Tracking Systems in use today:

e Azure DevOps
e Jira

e Bugzilla

e ClearQuest

We will focus on Azure DevOps in this document. The bug tracking features in Azure DevOps will
be discussed in another chapter

247

25 Azure DevOps

Azure DevOps is an Application Lifecycle Management (ALM) system, i.e., the system takes care of
all aspects in software development from planning, requirements, coding, testing, deployment

and maintenance.

Azure DevOps is a product designed specifically for software engineering teams with developers,
testers, architects, project managers, etc.

Azure DevOps (see Figure 25-1) is a Source Code Control (SCC), Bug Tracking, Project
Management, and Team Collaboration platform. Azure DevOps is tightly integrated with Visual
Studio as Microsoft is the vendor of both Visual Studio and Azure DevOps. For more information,
see [24].

CJ Azure DevOps software-usn MySoftware Boards Backlogs Search yel = Ch e
i + 2 MySoftware Team + £
ﬂ Overview -+ New Work ltem (3 View as board / Column options --- = Backlog items = Y &
i Boards =] Order Work Item Type Title State Effort Value Area Iteration Path
1 Product Backlog Item + B The system should store the data in a Dataabse New Business MySoftware\Sprint 1
El Work Items Task Create SQL Server ® Done MySoftware\Sprint 1
%= Boards Task Create Tables # In Progress MySoftware\Sprint 1
—_ 2 Product Backlog Item « Bl A Web Application should be created New Business MySoftware\Sprint 1
= Backlogs
Task Install Visual Studio To Do MySoftware\Sprint 1
¢ q
A SRIIE Task Learn ASP.NET # In Progress MySoftware\Sprint 1
= Queries + 3 Product Backlog ltem ==« B The System should be properly documented New Business MySoftware\Sprint 1
Task Create User Manual To Do MySoftware\Sprint 6
Repos
f Pipelines
A Test Plans
FI Artifacts

&2 Project settings

Figure 25-1: Azure DevOps

Here are some main features:

e SDLC Management (SDLC — Software Development Life Cycle)

e Software Team Collaboration

e Source Code Management

e Supports Agile, Scrum, CMMI

e Integrated Test Tools
e Automated Builds

e Builtin Team Foundation Version Control (TSVC) + Support for Git repositories

e Built-in support for Azure DevOps in Visual Studio (Team Explorer)

248

249 25 Azure DevOps

e Plug-in for Eclipse (Team Explorer Everywhere)
e MSSCCI Provider for other IDEs like LabVIEW
e etc.

Azure DevOps has plenty of competitors. The main benefit with Azure DevOps is that all the
systems mentioned above is integrated in one package, normally you would need lots of different
software for this.

Azure DevOps is something you install on a server, but to get access to the functionality there
exists different kinds of client tools:

e Team Explorer (integrated with Visual Studio)

e MS Excel Add-in (part of Team Explorer installation)

e MS Project Add-in (part of Team Explorer installation)

e Windows Explorer Integration (part of Power Tools). Very useful when working with Azure
DevOps outside of Visual Studio or Eclipse

e MSSCCI Provider (makes it possible to use Azure DevOps within tools that do not support
Azure DevOps, such as e.g., LabVIEW, SQL Server, etc.)

Team Explorer Everywhere

3.party software that integrates with Azure DevOps (using available web services)

25.1 Source Code Control (SCC)

With Azure DevOps you may use different source code repositories:

1. TFVC: Team Foundation Version Control (TFVC) uses a single, centralized server repository
to track and version files. Local changes are always checked in to the central server where
other developers can get the latest changes.

2. Git: Gitis a Distributed Version Control System (DVCS) that uses a local repository to track
and version files. Changes are shared with other developers by pushing and pulling changes
through a remote, shared repository.

We will focus on TFVC, since this is the default choice within Azure DevOps. Before you start
adding code or other documents to your repository, it is a good idea to create a proper folder
structure. Open Visual Studio and connect to your Azure DevOps, then open the Team Explorer.
From the Team Explorer, select the Source Control Explorer (see Figure 25-2).

Part 4: Management and Development Tools

250 25 Azure DevOps

lj Azure DevOps software-usn MySoftware Repos Files & $/MySoftware v Search £ = | e
u MySoftware + $/MySoftware / Code
& oveni ‘
verview = ;
& $/MySoftware Contents History - New ~ 1 Upload file(s) { Download as Zip 7
E Boards BuildProcessTemplates Name 1 Last change Changesets
v Code
Repos Database 2019-01-09 84 Added folder Da...
; Database
| B . Desktop 2019-01-09 92 Renamed Deskt...
Files Desktop
Examples 2019-01-09 93 Added folder Ex...
Changesets Examples
Web Web 2019-01-09 91 Renamed Web A..
®, Shelvesets
Documents
q Pipelines Process Documentation
Product Documentation
A Test Plans
! Artifacts
B Project settings &

Figure 25-2: Start by creating a proper folder structure within your new Azure DevOps project

25.2 Areas and Iterations

Figure 25-3 shows an example of different Areas in Azure DevOps. The different software modules
could be divided into different Areas.

O Azure DevOps software-usn MySoftware Settings Search b = 4 c
n MySoftware + Project Settings > Project configuration
ﬂ Overview ~ General Boards @ This project is currently using the Scrum process. To customize your work item types, go to the process customization page.

Overview lterations Areas
“ Boards

Teams Create and manage the areas for this project. These areas will be used by teams to determine what shows up on the team's backlog and what

_— work items the team is responsible for. Learn more about customizing areas and iterations 2
Repos Security
To select areas for the team, go to the default team's settings.
S Notifications

f Pipelines

Service hooks New child =)
A Test Plans

Dashboards R

Areas Teams
! Artifacts « MySoftware = MySoftware Team
v

Boards ~ Database

Project configuration « Database Scripts

Team configuration Stored Procedures

Tabl
GitHub connections ales
~ Desktop
- Plpehnes DesktopApp1

~ Documentation
Service connections
Installation Guide

Agent pools User Manual
Retention and parallel jobs v Web
Release retention WebApp1

% Project settings «

Figure 25-3: Azure DevOps Areas

Figure 25-4 shows an example of different Iterations in Azure DevOps. We can create Iterations for
the different releases/milestones, such as Alpha, Betal, 2, 3, RC, RTM.

Part 4: Management and Development Tools

251

25 Azure DevOps

O Azure DevOps software-usn MySo
[mysoftware + Project Settings
. ~ General

Overview
Overview
Boards
Teams
Repos Security
S Notifications
* Pipelines
Service hooks
A Test Plans
Dashboards
! Artifacts
v Boards

% Project setti

25.3

Work Items (Figure 25-5) are an important part of Azure DevOps. You may use Work Items to

Project configuration
Team configuration

GitHub connections

~ Pipelines
Service connections

Agent pools

ftware Settings Search b =
> Project configuration
Boards @ This project is currently using the Scrum process. To customize your work item types, go to the process customization page.

Iterations Areas

o &

Create and manage the iterations for this project. These iterations will be used by teams for iteration planning (sprint planning). Learn more

about customizing areas and iterations

To select iterations for the team, go to the default team's settings.

New New child =)

Iterations Start Date End Date
~ MySoftware
Alpha
~ Beta -
Betal

Beta2

Retention and parallel jobs

Release retention

ngs K

Figure 25-4: Azure DevOps lterations

Work Items

register your requirements, user stories, bugs, tasks, etc.

lj Azure DevOps software-usn MySoftware Boards Work Items Search

[wysottware + Work items

ﬂ Querview
“ Boards

| [Work Items

Recently updated

D
F% Boards ® 104
= Backlogs o
&, sprints 106
=% Queries 102
Repos 105
f Pipelines 103
A Test Plans 99
! Artifacts
% Project settings &

~ + New Work Item ~ (> Open in Queries /2 Column Options [Recycle Bin

Title Assigned To State
Learn ASP.NET = @ Unassigned ® In Progress
Create Tables ® unassigned ® In Progress
Create User Manual @ Unassigned To Do

E A Web Application should be created @ Unassigned New

B The System should be properly documented @ Unassigned New
Install Visual Studio @ Unassigned To Do

B The system should store the data in a Dataabse @ Unassigned New

Figure 25-5: Work Items in Azure DevOps

In Azure DevOps you can create different Work Items, such as:

Task

Types “~ Assignedto “~ States » Area

pel =

o
=

Area Path

MySoftware
MySoftware
MySoftware
MySoftware
MySoftware
MySoftware

MySoftware

a @

e

Tags b4

P

art 4: Management and Development Tools

252 25 Azure DevOps

° Bug

o Feature

e Scenario

° Issue

° User Story
e TestCase
[etc.

These Work Items will be used at different level in your development cycle. When the Testers
reports bugs, they will, e.g., use the “Bug” Work Item, etc.

In Figure 25-6 we see how we can enter new Work Items using the Work Item Editor.

('J Azure DevOps software-usn MySoftware Boards Work Items Search ie = £ e
& NEWBUG*
MySoftware -T-
System not Working
B overview @ unassigned ' 0 comments Add tag m
Q Boards State New Area MySoftware
Reason New defect reported Iteration MySoftware
[2} Work Items
Details ') & 1]
E= Boards
Repro Steps Details Development
= Backlogs o
Priorits .
Click to add Repro Steps riority + Add link
O, Sprints 2 Development hasn't started on this
Severity item.
= Queries System Info 3 - Medium Related Work
Effort
s Click to add System info + Add link »
Remaining Work There are no links in this group.
q Pipelines Acceptance Criteria
Activity
A Test Plans Click to add Acceptance Criteria
H . Build
| PO Discussion
Found in Build
e Add a comment. Use # to link a work item, ! to link a pull request,
or @ to mention a person. ntegrated in Build
#% Project settings &

Figure 25-6: Work Item — New Bug

25.3.1 Queries

Queries are used to find existing Work Items. You may create different Queries to make it easy to
find the Work Items you need. Queries may be personal or visible for everybody in the project

You can use the Query Editor (Figure 25-7) to tailoring your own queries.

Part 4: Management and Development Tools

253

25 Azure DevOps

All Queries > My Queries > B Active bugs ~~

Results Editor Charts [:3“ Run query lew quer Bl save que & Save as.. Revert cl

Type of query BH Flat list of work items Query across projects []

Filters for top level work items

And/Or Field Operator Value

+X O Waork ltem Type = » Bug e

+ X O and “ | State s ' Closed ~

+ Add new clause

Figure 25-7: Query Editor

In Agile development and Scrum the Taskboard feature (Figure 25-8) is very useful.
o Azure DevOps software-usn MySoftware Boards Sprints Search pel = Ch e
[mysoftware + & MySoftware Team £ Hoteration dates
ﬂ Overview Taskboard Backlog Capacity -+ New Work ltem ~~ O, Alpha ~ % Y &
% Boards 2 Collapse all To Do In Progress Done

4
El 89 The system should

store the data in a Dataabse

@ Unassigned

State New

= Backlogs

101 Create Tables

@ Unassigned

State # In Progress

[2} work Items

= Boards

| O, sprints P
Bl 102 A Web Application
= should be created

v Queries
@ Unassigned

Repos State New

f Pipelines

103 Install Visual Studio 104 Learn ASP.NET

@ Unassigned @ Unassigned

State To Do State ® In Progress

4
A Test Plans Bl 105 The System should

be properly documented
! Artifacts

@ Unassigned

State New

% Project settings «

Figure 25-8: Taskboard

25.5 Azure DevOps Services

100 Create SQL Server

@ Unassigned

State @ Done

Part 4: Management and Development Tools

254 25 Azure DevOps

Azure DevOps Services (Figure 25-9) is a cloud-based version of Azure DevOps Server. It is free to
use for up to 5 users and it is a good choice for small teams that don’t want to install and maintain
a local Azure DevOps installation. It is also handy for personal use or students.

Azure DevOps is located here: http://visualstudio.com

COLLABORATION AGILE PLANNING

SOURCE CONTROL TEST EXECUTION @

CONTINUOQUS BUILDS
Figure 25-9: Azure DevOps Services
Getting started with Azure DevOps:

e Goto https://dev.azure.com

e Create an Account (You need a Windows Live ID) and specify an URL for your account
o C(Createa New Team Project
e You are ready to start
o Connect to Azure DevOps from Visual Studio
o Oruse the Web based interface provided (except for SCC)
e Assign Team members
e Add Areas, Iterations, etc.
e Add your Source Code
e Check-in/Check-out your code

Figure 25-10 shows the startup screen in Visual Studio Online.

Part 4: Management and Development Tools

http://visualstudio.com/
https://dev.azure.com/

255

25 Azure DevOps

l:l Azure DevOps

My organizations
n alarmsystem
n bachelor-v17-imsephi
CheckpointAS
B ees17
a olavd
n Rutor
| B software-usn

a systemutviklingogdokumentasj...

Related pages

What's new in DevOps
Documentation

Get help

-+ New organization

£ Organization settings

software-usn

Projects My work items My pull requests

MySoftware
Development of MySoftware

Search pel = (b e

+ Create project

Y Filter projects

ﬂ EnvironmentalPublicHealth

Figure 25-10: Azure DevOps — Getting Started

When creating a New Team Project, we can select between different templates, see Figure 25-11,

such as Agile Development and Scrum Development.

o Azure DevOps

My organizations
n alarmsystem
bachelor-v17-imsephi
CheckpointAS
B ees1?
a olavd
“ Rutor
| B software-usn

a systemutviklingogdokumentasj...

Related pages
What's new in DevOps
Documentation

Get help

+ New organization

3 Organization settings

software-usn

Projects My work items My pull requests

ﬂ EnvironmentalPublicHealth

All projects

ﬂ EnvironmentalPublicHealth
E Software Engineering

TestProject
T This is a test project used to test the functionality in VSTS

-
v
Create new project X
Project name *
MySoftware v
Description
Visibility
& ®
Private

Only people you give
access to will be able to
view this project

Anyone on the internet
can view the project
Certain features like
TFVC are not supported.

Public projects are disabled for your organization. You can turn on public visibility
with organization policies.

#~ Advanced

Version control @ Work item process @

‘ Scrum ~

Team Foundation Version Control

Figure 25-11: New Team Project - Templates

When we have created a new Project (or clicked on an existing Project) the following web page
appears (Figure 25-12):

Part 4: Management and Development Tools

256 25 Azure DevOps

l:j Azure DevOps software-usn MySoftware Overview Summary Search ,O = [E_DU e

MySoftware T Mysoftware & Private
ﬂ Overview
@ Summary
EH Dashboards About this project Q Like © 7 Project stats Last 7 days

B wiki Development of MySoftware
Boards

B9 Boaras
0]

Repos

P ripelines
A TestPlans
& artifacts

Members 1

e

31 Project settings &

Figure 25-12: Visual Studio Team Services — Project Home Page

25.6 Client Tools

When you use the different client tools, it doesn’t matter if you use the Azure DevOps Server or

Azure DevOps Services.

Below we give an overview of the different client tools available for Azure DevOps:

e Team Explorer (integrated with Visual Studio)

e MS Excel Add-in (part of Team Explorer installation)

e MS Project Add-in (part of Team Explorer installation)

e Windows Explorer Integration (part of Power Tools)
Very useful when working with Azure DevOps outside of Visual Studio or Eclipse

e Azure DevOps MSSCCI Provider (makes it possible to use Azure DevOps within tools that do
not support Azure DevOps, such as e.g., LabVIEW, SQL Server, etc.)

e Team Explorer Everywhere

e 3.party software that integrates with Azure DevOps (using available web services)

25.6.1 Team Explorer

Team Explorer is integrated with Visual Studio. In Figure 25-13 we see Visual Studio with Team
Explorer. In addition to Team Explorer we have the Source Control Explorer, which is handy when
we want to make a good structure, create folders, etc. We can check-in and check-out files using

the Source Control Explorer.

Part 4: Management and Development Tools

257

25 Azure DevOps

hq Source Control Explorer - Microsoft Visual Studio

Quick Launch (Ctrl=Q) P - B x

FILE EDIT VIEW DEBUG TEAM SQL TOOLS TEST ANALYZE WINDOW HELP
v B - © - b Attach.. - Ao D-@® &

3 Source Control Explorer # X Start Page -

g R &N T a9 RO & W - Workspace: WIN-MJUDGI2VPUT - [<] &t | @ Search Work ltems (Ctrl+') P~
Source location: §& Development ~ | Pending Changes | Development <~
Folders % || Local Path: CWorl\Development Checkin | Shelve | Actions +
4 28 tucvisualstudio.com\DefaultCollection || Name « Pending Change | User Latest | Last Check-in P—

.

4 DE‘E'““’““ i BuildProcessTemplates Yes 4/26/2013 12 |

i o ('i“:dpmmmammﬂ + il Code sddl Hans-Petter H... Ves

+£; . + il Documents add Hans-Petter H.., Ves 4 Related Work Items
“ ﬂag‘p :t Queries v | Add Work ltem by ID
b+
— e e e S T e I e Rk
4+ &) Server
+ il Database 4 Included Changes (7)

b+ il Web Exclude All | Show All v

b+ [l Documents
4 &% Development Project 1
emplates

b il Desktop
b [Mobile
b W Server
b i Web

b ml Decuments

ScrumTest

b Wl BuildProcessTemplates
& Test

b Wl BuildProcessTemplates

4 [l C:\Work\Development
4 [Code [add]
4 il Bxample [add]
il Desktop [add]
4 [l Server [add]
B Database [add]
il Web [add]
[Documents [add]

4 Excluded Changes
Include All | Show All v

Drag changes here to exclude from the check-in.

Solution Explorer | Team Explorer

Figure 25-13: Visual Studio with Team Explorer

The process of check-in and check-out files can also be done from the Solution Explorer in Visual
Studio (see Figure 25-14).

ﬂ App1 - Microsoft Visual Studio Quick Launch (Ctrl+) P = B X
FILE EDIT VEW PROJECT BULD DEBUG TEAM SQL TOOLS TEST ANALYZE WINDOW HELP
G- - - C - pStat- Debug - | A _: SiD-E RS
& Toolbox “ = B X Formles Form1.cs [Design] # X Source Control Explorer Ml Solution Bxplorer ~ X
@ .
g Search Toolbox r e q p
LR W dows Eorney - = Form1 [=] Search Solution Explorer (Ctrl=;) P~
h Pointer
P BackgroundWorker Build Selution F6
&" BindingNavigator b 5 & Properties Rebuild Solution
& BindingSource b =B References Clean Solution
Button 52 ';‘FP“]”"“B Run Code Analysis on Solution Alt+F11
4 /(& Forml.cs
Gt Batch Build...
b 47 Form1.Design
8= CheckedListBox
a4 Form1resc Configuration Manager..
@ ColorDizlog Qe D () b #3 Forml B Manage NuGet Packages...
B ComboBox g butont B b & €* Program.cs
o o =] g [Enable NuGet Package Restore
B ContetMenuStrip
& DataGridview @1 New Solution Explorer View
& DateSet Calculate Code Metrics
B DeteTimePicker Add ,
B DuectoryFniry £ Set StartUp Projects...
P DirectorySearcher
& Get Latest Version (Recursive)
[E DomainUpDown -
Check Out for Edit.
€@ ErorProvider : ek Dut for =
A Eventlog & Checkln..
5 FileSystemWatcher B 4
& FlowlayoutPanel 2
E1 FolderBrowserDizlog L+ Rename
FontDislog Open Folder in File Explorer
= Solution Explorer | Team Exple
Ll GroupBax Properties Alt+Enter
H HelpProvider Properties
mo HScrollBar App1 Solution Properties -
B Imagelist &
A Label (Mame) Appl -
A LinkLabel Active confi Debug|Any CPU
9 ig|Any
ListBox Description
ListView Path C:\Work\Development\Code\Example\ ~
). MaskedTextBox (Name)
Menustrip The name of the solution file.
MessageQueue -

Figure 25-14: Visual Studio and Solution Explorer

Part 4: Management and Development Tools

258

25 Azure DevOps

25.6.2

MS Excel Add-in

MS Excel Add-in (see Figure 25-15) is part of the Team Explorer installation.

25.6.3

Figure 25-15: MS Excel Add-in for Azure DevOps

MS Project Add-in

MS Project Add-in is part of the Team Explorer installation.

25.6.4

Windows Explorer Integration

EEH9-®-|= Book1 - Microsoft Excel
Mme Insert Page Layout Formulas Data Review View Add-Ins Team
@] | A‘j &, Get Work ltems &7 Edit Areas and Iterations |] Add Tree Level = m Outdent @ Team Foundation Help
=] - £ y
J Choose Columns Configure = = Add Child p. Indent . iﬁi Team Project Process Guidance
New Publish Refresh o i o Mew x _
List L] Links and Attachments Wgg Open in Web Access Report | S Team Project Portal
Waoark ltems Tree Reports Help
| H22 - (- £ |
A B c D E
o Project: Weather System Server: tuc.visualstudio.com'\DefaultCollection Query: All Work ltems List type: Flat
2 1y B wWork Item Type B title - | Assigned To Bl state [~ |
3 6 Bug New Web Site not working on Safari Web Browser Hans-Petter Halvorsen Active
4 7 Test Case Is Data Saved Hans-Petter Halvorsen Design
5 8 Bug TV goes to sleep after 4 hours Active
6 9 Task Implement Weather Prediction New
7 10 Task Database Tables for Forecast need to be improved MNew
8
q

The Windows Explorer integration (see Figure 25-16) is part of “Azure DevOps Power Tools”. Very

useful when working with Azure DevOps outside of Visual Studio or Eclipse, etc.

Part 4: Management and Development Tools

259

25 Azure DevOps

25.6.5

Figure 25-16: Windows Explorer Integration in Azure DevOps

Navn Dato endret Type Starrelse
w. Applications 29.01.2014 15:40 Filmappe
ol Seryar 2001 2014 1540 Filmappe
Apne
Apne i nytt vindu
Add to VLC media player's Playlist
Play with VLC media player
7-Zip
Del med
B Snagit
Teamn Foundation Server @5 Get Entire Workspace
(5] Shared Folder Synchronization IdB e
Gjencpprett tidligere versjoner Add...
Ty Combine files in Acrobat... Check Out for Edit...
Delete
Inkluder i bibliotek Rename/Move...
N NetWare Copy... Unde...
Skann mapper etter virus og spionprogrammer Check In...
Send fil Shelve Pending Changes...
5+ Unshelve Shelveset...
Klipp ut Resolve...
Kopier]
4 History...
Lag snarvei Compare »
Slett
P Detected Changes...
Workspace...
Egenskaper
@ Refresh

Azure DevOps MSSCCI Provider

The Azure DevOps MSSCCI Provider makes it possible to use Azure DevOps within tools that do not
support Azure DevOps, such as e.g., LabVIEW, SQL Server, etc.

Part 4: Management and Development Tools

260 25 Azure DevOps

i3 Database Example.lvproj - Project Explorer = =
File Edit View Project Operate Tools Window Help

EE IR = Al

Items | Files

bﬂgg Project: Database Example.lvproj
= § My Computer

, ?5? Dependeng Open |

i i Explore..
Build Speci Shp T Check In - Source Files - Workspace: WIN-MJUO6J2VPUT - cIEl
ow In Files View
Print... EI %E : =
———| | SourceFiles | Comment
Run ||
e L
Find Work ltems |[Name Change | Folder
- 9. [“] Database Example.vproj add cAWork '\ Code\ Examples) Example
Check-in
B Motes
Add to Source Contr =|j
- Policy
Arrange B Warnings
Remove from Projec
Rename... SIES
Replace with...
Properties Cancd y
S —— 4

Figure 25-17: Azure DevOps MSSCCI used together with LabVIEW

In LabVIEW, we select Tools =» Options to configure the Azure DevOps MSSCCI Provider for use
within the LabVIEW environment, then select the “Source Control” tab (see Figure 25-18). If you
have installed the Azure DevOps MSSCCI Provider properly you should be able to find it in the list
of available providers.

a Options = =
Category ~ Source Control

New and Changed
Front Panel

Black Diagram General
Controls/Functions Palettes

. Source Control Provider Name
Envirenment

Search Team Foundation Server MSSCCl Provider | w Advanced..
Paths Source Control Project

Printing

§/Development Change..
Menu Shorteuts

Revision History Display only selected files in Source Control Operations dizlog box
Security

Shared Variable Engine Include hierarchy when adding files

VI Server [Exclude vilib

Web Server

MathScript [Exclude instr.lib

Include callers when checking out files

[] Display Source Control Operations dialog box for file checkout

Prompts
Prompt to check out files when edited
Prompt to add files to source control when adding to LabVIEW project
Notify if files are already checked out

oK Cancel Help

Figure 25-18: Configuration of Azure DevOps MSSCCI Provider in LabVIEW

25.6.6 Team Explorer Everywhere

3.party software that integrates with Azure DevOps (using available web services)

Part 4: Management and Development Tools

261

25 Azure DevOps

25.7
DevOps

Azure DevOps has built-in Templates for Agile Development and Scrum.

We have the Product Backlog and the Sprint Backlog features (see Figure 25-19).

Agile (Scrum) Development in Azure

HOME CODE WORK BUILD TEST Search work items o~
Backlogs Queries
.
Features Backlog items Features
Backlog items 1
Backlog Board Forecast Off Mapping On View Backlog items
4 Current
Apha New &= = Create query ‘Column options. = v Q
4 Future Type Product Backlog Ttem - x Title
Beta Tite Add
RC
RTM Order Work Itam Type Title State Effort Iteration Path
1 Product Backlo... Il Backiog Item 1 New ScrumTest\Alpha
2 Product Backlo... Il Backlog Item 2 New ‘ScrumTest\Beta
Figure 25-19: Product Backlog and Sprint Backlog in Azure DevOps
We also have a digital Taskboard available, see Figure 25-20.
o Azure DevOps software-usn MySoftware Boards Sprints Search pel =] c
No iteration dates
u MySoftware +) MySoftware Team ~ 8 Set dates

ﬂ Overview
% Boards

[2 work Items

E®= Boards

oD

Backlogs
O, sprints

= Queries

Repos

o Pipelines
A Test Plans
g% Artifacts

% Project settings &

Taskboard Backlog

Capacity -+ New Work Item ~~

2 Collapse all

4

To Do In Progress

El 99 The system should
store the data in a Dataabse

@ Unassigned

State

101 Create Tables

@ Unassigned

State @ In Progress

New

103 Install Visual Studio

@ Unassigned

State

El 102 A Web Application
should be created

@ Unassigned

State

104 Learn ASP.NET

@ Unassigned

To Do State ® In Progress

Mew

El 105 The System should
be properly documented

@ Unassigned

State New

Figure 25-20: Using a Taskboard in Azure DevOps

O Apha v FH Y &S

Done

100 Create SQL Server

@ Unassigned

State

® Done

Part 4: Management and Development Tools

262 25 Azure DevOps

25.7.1 Product Backlog Items in Azure DevOps

To create the Product Backlog, we can add them in Azure DevOps as so-called Work Items. If you
use the Agile/Scrum templates a predefined Work Item Type “Product Backlog Item” is used for
this purpose.

lj Azure DevOps software-usn MySoftware Boards Backlogs Search s =] e
[mysoftware + = MySoftware Team 2
ﬂ e -+ MNew Work Item (3 Viewasboard /? Column options - -- = Backlogitems ~ T Y &
% Boards [E] Order Work Item Type Title State Effort Value Area Iteration Path
1 Product Backlog Item « B The system should store the data in a Dataabse New Business MySoftware\Alpha
ﬂ Work Items Task Create SQL Server ® Done MySoftware\Alpha
F= Boards Task Create Tables ® In Progress MySoftware\Alpha
- 2 Product Backlog Item « B A web Application should be created MNew Business MySoftware\Alpha
= Backlogs
Task Install Visual Studio To Do MySoftware\Alpha
¢ 5
J’ SRLIE Task Learn ASP.NET ® In Progress MySoftware\Alpha
—:V Queries =+ 3 Product Backlog ltem === « B The System should be properly documented New Business MySoftware\Alpha
Task Create User Manual To Do MySoftware

Repos

@ ripelines
A Testrlans
& Artifacts

2 Project settings &

Figure 25-21: Create the Product Backlog in Azure DevOps

You may also group the items in the Product Backlog into “Features”.

25.7.2 Sprint Backlog Items in Azure DevOps

To create the Sprint Backlog, you just drag them to the proper lteration.

Part 4: Management and Development Tools

263

25 Azure DevOps

f:j Azure DevOps

l MySoftware T

ﬂ Qverview
% Boards

[work Items

% Boards

1]

Backlogs

| &

=% Queries
f Pipelines
A Test Plans
FI Artifacts

Sprints

Repos

2 Project settings &

software-usn MySoftware Boards Sprints
O, MySoftware Team ks
Taskboard Backlog Capacity -+ New Work Item ~~
2 Collapse all To Do In Progress

u
El 99 The system should

store the data in a Dataabse

@ Unassigned

State New

El 102 A Web Application
should be created

@ Unassigned

State New

El 105 The System should
be properly documented

@ Unassigned

State New

101 Create Tables

@ Unassigned

State @ In Progress

103 Install Visual Studio

@ Unassigned

State

104 Learn ASP.NET

@ Unassigned

To Do State @ In Progress

Search jel =

o @

No iteration dates

Setdates
O, Alpha = v &
Done

100 Create SQL Server

@ Unassigned

State @ Done

Figure 25-22: Create the Sprint Backlog in Azure DevOps

To make that happen, you need to configure the different sprints as “Iterations” in Azure DevOps

(Figure 25-23). You also need to right-click and select “Set as Teams Backlog iteration”.

CJ Azure DevOps

MySoftware aF

ﬂ Overview
% Boards
j@ Repos
f Pipelines
A Test Plans
F. Artifacts

B Project settings &

software-usn

<

MySoftware

Project Settings
General

Overview

Teams

Security
Notifications
Service hooks

Dashboards

Boards
Project configuration
Team configuration

GitHub connections

Pipelines

Service connections
Agent pools

Retention and parallel jobs

Release retention

Settings

Project configuration

Boards

lterations Areas

Search e = 0

@ This project is currently using the Scrum process. To custemize your work item types, go to the process customization page.

Create and manage the areas for this project. These areas will be used by teams to determine what shows up on the team's backlog and what
work items the team is responsible for. Learn mere about customizing areas and iterations .2

To select areas for the team, go to the default team’s settings.

Mew child =]

Areas Teams

~ MySoftware « MySoftware Team
~ Database
v Database Scripts
Stored Procedures
Tables
+ Desktop
DesktopApp1
~ Documentation
Installation Guide
User Manual
~ Web

WebApp1

Figure 25-23: Configure Iterations and Sprints in Azure DevOps

Break Sprint Backlog Items down into Tasks:

Finally, you break the Sprint Backlog Items into Tasks. In the Sprint Backlog click the

add Tasks to the specific Backlog Item (see Figure 25-24).

+ sign to

Part 4: Management and Development Tools

264

25 Azure DevOps

Sprint 1
Backlog Board Capacity

=l = Create Query Column Options i

Title State

- [} Hello World web site New

+ I Add an information form
New Task 1*: Welcome Screen

+ l Change initial view
Q 9 » O Copy template URL

Welcome Screen

3= l Welcome back

teration FabrikamFiber\Release \Sprint 1

STATUS

Assigned To

To Do

New task

cked

DESCRIPTION

DETAILS
Remaining Work @
acklog Priority |

Area FabrikamFiber

HISTORY LINKS ATTACHMENTS

Figure 25-24: Break Sprint Backlog Items down into Tasks

Then give the Task a name, and estimate the work it will take (Remaining Work).

The results may look something like this (Figure 25-25):

Part 4: Management and Development Tools

265

25 Azure DevOps

HOME CODE WORK

Backlog item Work items

£
Features

Product Backlog
4 Current
Sprint 1
Future
Sprint 2
Sprint 3
Sprint 4
Sprint 5

Sprint 6

BUILD TEST
Sprint 1
Backlog Board Capacity
& = Create Query Column Options 4
Title
* o 4] Hello World Web Site
Welcome Screen
Change background color
About Screen
+ 4 I Slow response on welcome page
Rework opening animation
+ 4 IChangeinitiaI view
g . I Add an information farm
Auto-complete user’s name in form if logged in
Auto-save
+ 4 I'ﬂelcnme back

Figure 25-25: The Sprint Backlog divided into a hierarchical structure with Features, Backlog

25.7.3 Taskboard

Items and Tasks

Based on the Sprint Backlog Items and the Tasks created for each Sprint Backlog Items we can

start using the Taskboard features inside Azure DevOps.

The Taskboard is the heart of Daily Scrum Meetings. We can easily move tasks (drag and drop with
the mouse) on the task board to reflect their current state.

Part 4: Management and Development Tools

266 25 Azure DevOps

April 29 - May 17§

Spr‘int 1 11 work days remaining
Backlog Board Capacity Group by Backlog items Person...
ToO DO 10 h IM PROGRESS 5 h
4 Add an information Auto-save Auto-complete
form + users name in form
Th if logged in
4 3 Jamal Hartn...
4 Welcome Back + Add interactive text
2 h to Welcome Back
page =
2 Raisa Pokrovs...
4 Hello World Web Site Welcome Screen Change Background About Screen
Color
6 h +
2 Johnnie McL.... 2 Christie Chu... 2 Micole Zam...

Figure 25-26: Updating the Sprint Taskboard in Azure DevOps

We can also easily Assign/reassign people to the different tasks in addition to updating the
“Remaining Work” field before the Daily Scrum Meeting, see Figure 25-27.

. April 29 - May 17) April 29 - May 17 |f
Sprint 1 11 work days remaining 1 Sprint 1 11 work days remaining
Backlog ~ Board Capacity Group by Backlog items Person... Backlog Board Capacity Group by Backlog items Person...
TODO10h IN PROGRESS 5 h TODO10h IN PROGRESS 5 h
4 Add an information Auto-save Auto-complete 4 Add an information Auto-save Auto-complete
form + user’s name in form form + user's name in form
7h if logged in 7h iflogged in
Unassigned 3 Jamal Hartn.. n istie Church... 3 Jamal Hartnett (..
Unassigned 3
Johnnie McLeod {Fabrikam) 2
4 Welcome Back + Christie Church (Fabrikam) 4 Welcome Back + 1 wactive text
2h Nicole Zamora (Fabrikam) 2h 0.5 =
Raisa Pokrovskaya (Fabrik: .
va (Fabrikam) 0.25 kaya (Fabrik...
Francis Totten (Fabrikam) 0
Jamal Hartnett (Fabrikam)
4 Hello World Web Site Welcome Screen Change Background About Screen 4 Hello World Web Site ‘Welcome Sereen Change Background About Screen
Color Cols
Gh + 6h + or
2 Johnnie McL... | 2 Christie Ch... 2 Nicole Zamor., 2 Johnnie Mcle... | 2 Christie Chur... 2 Hicole Zamo...

Figure 25-27: Using the Taskboard to update the Sprint Tasks before/under the Daily Scrum
Meeting

25.8 Software Testing in Azure DevOps

Part 4: Management and Development Tools

267 25 Azure DevOps

Team Foundation server (Azure DevOps) or Visual Studio Team Services (VSTS) is a great tool for
testing, for planning tests and it has advanced features for bug reporting and bug tracking (see
Figure 25-28).

Software Test Plan (STP)

S

“Test Case” Work Items .-Manual Testing by,
K Developers and

|Tester [Document

Planning Tests J—{ Perform Tests Test Besults

b

T T Execution of Unit Tests Software Test
g Documentation
“Product/Sprint Backlog” Work Items (STD)

_______________ \

\
- Functional & Non-Functional Requirements

I
Software Requirements Specifications (SRS) : - User & System Requirements
|

Figure 25-28: Software Testing in Azure DevOps/Visual Studio Team Services

25.8.1 Test Planning in Azure DevOps

In Azure DevOps you can create Test Plans and create Test Cases, see Figure 25-29.

Part 4: Management and Development Tools

268

25 Azure DevOps

] Visual Studio Team Foundation Server 2013 / FabrikamFiber -~

HOME CODE

i

Test plan
—
+ -
Ig Testplan

Static suite

WORK BUILD

B

TEST

You can't create test cases without a test pl...

+ New Add existing X e (] o

Requirement

Query-based

Shared steps|

CREATE TEST PLAN x
Name: Sprint 1
Area path: Fabrikam Fiber -
Iteratiom: Fabrikam Fiber\Release 1\Sprint 1 -
April 29 - May 17
Create Cancel
P

Figure 25-29: Test Planning in Azure DevOps

Part 4: Management and Development Tools

26 Databases

Almost any kind of software program uses a database for back-end storage, e.g., Facebook, etc.
Popular Database Systems:

e Microsoft SQL Server

e Oracle

e MySQL

e SQLlite

e MS Access
e MariaDB
e Etc.

The focus in this chapter will be Microsoft SQL Server. For more information about database
systems, please see [25].

26.1 SQL Server

SQL Server consists of a Database Engine and a Management Studio. The Database Engine has no
graphical interface - it is just a service running in the background of your computer (preferable on
the server). The Management Studio is graphical tool for configuring and viewing the information
in the database. It can be installed on the server or on the client (or both).

269

270 26 Databases

Database Engine

File Edit Wiew Tools Window Community Help
B = =R T
_ Object Explorer Details - x
Connect~ | 83 #9 = F [] 5§ @ @& T F] 5 seach -
= L4 PCBB2ISIOEVELOPMENT (SQL Server 10.0:04 | | pCg235|DEVELOPMENT (SQL Server 10.0.2531 - 5a)\Databases|TEST
© (1 Databases
& (L3 System Databases Name Policy Health State
r [Database Diagrams
[Tables
i views
[Synonyms.
[Programmability
i i [Service Broker
A Service running on the e
computer in the background 5 2 Synemyms =
& [Programmabity . >
® (3 Service Broker
i [Security ~| W TEST
2}]
Ready

A Graphical User Interface to the database used for
configuration and management of the database

Figure 26-1: SQL Server

In Figure 26-2 we see the SQL Server Management Studio.

licrosoft SQL Server Management Studio = =R ==

Edit View Query Debug Tools Window Community Help
NI ERE M
4} | scHooL - 1 Bxecute b v i3 =

= SQLQueryl.sql - P...SCHOOL (sa (52))° ~ || Properties ~ 3 x
QL Server select * from SCHOOI| @

Current connection parameters =

atabases |
- [[System Databases Smrasoatey
1§ LIBRARVSYSTEM Write vour Qu ery here ;:;ﬂ:;ft'I:Ef 00:00:00.0270016
=ce0e_Your Database Y ry 1 Finishtime 20032012 08:28:0
=5 Dafabese Diagrams 3 Name PC88235\DEVELO!
= 3 Tables Rows returne: 4
B System Tables Start time 20.03.2012 08:28:1
3 dbo.CLASS State Open
= dbo.COURSE B Connection
YOUPR & dbo.GRaDE —| Connection n PC88235\DEVELO
% [dbo.SCHOOL | o ¥ - . | |B Connection Details
Ta bILES dbo STUDENT Connection e 00:00:00.0270016
3 dbo.STUDENT_COURS Resuits | |1y Messages | Connection fi 20.03.2012 08:28:1
@ [dbo.TEACHER Schoolld ~ SchoolName Description Address Phone PostCode PostAddress Connection n 4
3 dbo.TEACHER_COUR? TUC The best school Telemark NULL NULL NULL Connection s 20.02.2012 08:28:1

® L3 Views

@ 3 Synonyms

@ 3 Programmability
[[Service Broker

MIT OK School UsA NULL NULL NULL Connection s Open
NTNU The second best school Trondheim NULL ~ NULL NULL Display name PC88235\DEVELO!
University of Oslo The third best school Oslo NULL NULL NULL

Login name sa
Server name PC88235\DEVELO!

® [Storage
i (3 Securiy The result from your Query Serverversior 10301500
E Session Tracit
@ (3 TEST
@ |J) WEATHERDATA | SPID 52
3 Security tame
1 R Server Objects = The name of the connection.
Pl F—— — v || @ Query executed successfully. PC88235\DEVELOPMENT (10.50 ... | 5 (52) | SCHOOL | 00:00:00 | 4 rows
Ready Ln1 Col21 Ch21 INS

Figure 26-2: SQL Server Management Studio

26.2 ER Diagram

271 26 Databases

ER Diagram (Entity-Relationship Diagram) is used for design and modeling of databases. It specifies
tables and relationship between them (Primary Keys and Foreign Keys), see Figure 26-3.

Table Name
Table Name =2 BOOK CHAPTER
PK | Bookid PK | Chapterid
N
BookTitle FK1 | Bookld ‘\(/,Commn
Summary ChapterNumt‘);/ Names
/ _ ChapterTitle
Primary Key Primary Key /

Foreign Key

Figure 26-3: ER diagram with Primary Keys and Foreign Keys relationships

We can use a lot of different tools to create such ER diagram. In this document, | will only focus on
the following:

¢ MSVisio
* ERwin

See below for more information about these tools.

26.2.1 MS Visio

In Figure 26-4 we see a typical ER diagram created in Visio.

272 26 Databases
Table Name)
Primary Key (PK)
SCHOOL CLASS COURSE GRADE
r———————
PK | Schoolld PK |Classid PK |Courseld PK | Gradeld
—>
SchoolName FK1 | Schoolld CourseName FK1 | Studentid
Description ClassName FK1 | Schoolld -t FK2 | Courseld
Address Description Description | Grade
Phone A Comment
PostCode
PostAddress ¢
A Foreign Key (FK)
h 4
STUDENT_COURSE STUDENT
PK,FK1 |Studentid » ek [studentia
PK,FK2 | Courseld
FK1 | Classid
StudentName
StudentNumber
TotalGrade
Address
Phone
EMail
TEACHER TEACHER_COURSE
PK Teacherld PK,FK1 | Teacherld
PK,FK2 | Courseld
FK1 | Schoolld
TeacherName
Description

26.2.2

ERwin

Figure 26-4: ER Diagram Example

ERwin is a very good tool for creating ER diagrams, but it is expensive. But there exists a free
edition called “CA ERwin Data Modeler Community Edition” —this is a free edition that contains a
subset of the standard product.

In Figure 26-5 we see the same database model in ERwin as the example shown in Figure 26-4.

26.3

Figure 26-5: Database Modelling with ERwin

Structured Query Language

273 26 Databases
STUDENT
Studentld 4
Classid (FK)
StudentMame
StudentMurnber
TotalGrade STUDENT_COURSE
Address Studentld (FK)
Phone b Courseld (FK)
Erail
SCHOOL
oAl COURSE Schoolld CLASS
sl Courseld SchoolMarne Classld
Studentid (FK) 8 courselame I Description = Schoolld (FK)
Courseld (FK) Address
Schoolld (FE) ClassMame
Grade O i Phone O inti
Cornment escne|on PostCode escription
Postaddress
]
TEACHER_COURSE TEACHER
Teacherld (FK) VSEtenI=ilel
Courseld (FK) Schoalld (FK)
TeacherMame
Description

Here we will only give a short introduction to Structured Query Language. For more information

about SQL, please see [19].

SQL is a database computer language designed for managing data in Relational Database

Management Systems (RDBMS). In SQL, we have 4 different types of queries:

e [INSERT
e SELECT
e UPDATE
e DELETE

Below we see some examples of typical SQL queries:

insert into STUDENT (Name, Number, SchoolId)
values ('John Smith', '100005', 1)

select SchoolId, Name from SCHOOL
select * from SCHOOL where SchoolId > 100

update STUDENT set Name='John Wayne' where StudentId=2

274 26 Databases

delete from STUDENT where SchoolId=3

These are refered to as CRUD — Create (Insert), Read (Select), Update and Delete.

26.3.1 Best Practice

Here are some “Best practice” recommendations for creating tables in a database system:

* Tables: Use upper case and singular form in table names — not plural, e.g., “STUDENT” (not
students)
. Columns: Use Pascal notation, e.g., “Studentld”
. Primary Keys:
— Ifthe table name is “COURSE”, name the Primary Key column “Courseld”, etc.
— “Always” use Integer and Identity(1,1) for Primary Keys
. Specify Required Columns (NOT NULL) —i.e., which columns that need to have data or not
* Data Types: Standardize on these Data Types: int, float, varchar(x), datetime, bit
* Use English for table and column names
* Avoid abbreviations! (Use RoomNumber — not RoomNo, RoomNTr, ...)

27 Unit Testing

Unit Testing (or component testing) refers to tests that verify the functionality of a specific section
of code, usually at the function level. In an object-oriented environment, this is usually at the class
and methods level. Unit Tests are written by the developers as part of the programming. Unit tests
are automatically executed (e.g., Visual Studio and Azure DevOps have built-in functionality for
Unit Testing).

Here are some “best practice” rules regarding Unit Testing:

e A Unit Test must only do one thing

e Unit Test must run independently

e Unit Tests must not be depended on the environment

e Test Functionality rather than implementation

e Test public behavior; private behavior relates to implementation details

e Avoid testing Ul components

e Unit Tests must be easy to read and understand

e Create rules that make sure you need to run Unit Tests (and they need to pass) before you
can Check-in your Code in the Source Code Control System

27.1 Unit Tests Frameworks

Unit Tests are built into Visual Studio. Some other Unit Tests Framework are:
1. JUnitis a unit testing framework for the Java programming language.

2. Nunit: NUnit is an open source unit testing framework for Microsoft .NET. It serves the
same purpose as JUnit does in the Java world

3. LabVIEW Unit Test Framework Toolkit

4. etc.

27.2 Unit Testing in Visual Studio

Visual Studio has integrated possibilities for Unit Testing. In Figure 27-1 we see the Unit Test
Project that is built into Visual Studio.

Note! Some of the more advanced test features in Visual Studio is only available in the Enterprise
edition.

275

276

27 Unit Testing

Add New Project

?

b Recent [.NET Framework 4.5

-| Sort by: ‘ Default

- == Search Installed Templates (Ctrl+E) -

4 Installed Ecj Unit Test Project

4 Visual C#

Windows Store

Windows

Web

Cloud

Reporting

Silverlight

Test

WCF

Workflow
TypeScript

b Other Languages

I+ Other Project Types

-

Visual C# Type: Visual C#

A project that contains unit tests,

I Online

Click here to go online and find templates.
Mame: UnitTestProject1
Location: | C\Work\Development\TFS\DevelopmenttUnit Tests\Bank

o [Coowe]

| OK | | Cancel

Figure 27-1: Unit Test Project used in Visual Studio

A typical Test Class in Visual Studio look

s like this:

using System;

using Microsoft.VisualStudio.TestTools.UnitTesting;

using BankAccount;

namespace BankTest

{
[TestClass]
public class BankAccountTests
{
[TestMethod]
public void TestMethodl ()
{
}
}
}

//The Code that is going to be tested

A test method must meet the following

requirements:

* The method must be decorated with the [TestMethod] attribute.

¢ The method must return void.

* The method cannot have parameters.

Example of a Unit Test written in C#:

Part 3: Platforms &

277 27 Unit Testing

[TestMethod]
public void Debit WithValidAmount UpdatesBalance ()
{
// arrange
double beginningBalance = 11.99;
double debitAmount = 4.55;
double expected = 7.44;

BankAccount account = new BankAccount ("Mr. Bryan Walton",
beginningBalance) ;

// act

account.Debit (debitAmount) ;

// assert

double actual = account.Balance;

Assert.AreEqual (expected, actual, 0.001, "Account not debited
correctly") ;

}

We get an overview of all the Tests in the Test Explorer (Figure 27-2):

Test Explorer * 31X

S i - Search P~

Run All | Fun,.. =

4 Failed Tests (1)

'::E::l AccountInfo_GetAccountInfo_InvalidData

4 Skipped Tests (1)

1 Accountinfo_sAddCheckingAccount_[nvalidData
4 Passed Tests (2)

&) Accountinfo_AddCheckingAccount_ValidData = 1ms
®) Accountinfo_AddSavingsAccount_ValidData < 1ms
4 Mot Run Tests (1)

) Accountinfo_CreateAccount_InvalidData

AccountInfo_GetAccountInfo_InvalidData
Source: UnitTestl.cs line 11

t:i Test Failed - AccountInfo_GetAccountinfo_InvalidData

Message: Assert.IsTrue failed. *1234° is not an authorized
account

Elapsed time: 216 ms

4 StackTrace:

AccountlnfaTests Accountlnfo_GetAccountlnfo_In...

Figure 27-2: Test Explorer inside Visual Studio

When you build the test project, the tests appear in the Test Explorer. If the Test Explorer is not
visible, choose Test on the Visual Studio menu, choose Windows, and then choose Test Explorer.

Part 3: Platforms &

278 27 Unit Testing

As you run, write, and rerun your tests, Test Explorer displays the results in default groups of
Failed Tests, Passed Tests, Skipped Tests and Not Run Tests.

You can choose to run the tests manually or automatically, e.g., every time you build the code, etc.
If you use Azure DevOps together with Unit Testing in Visual Studio you can also choose to force
Unit Testing before you can check-in the code.

27.3 Code Coverage

Code coverage is a measure used in software testing. It describes the degree to which the source
code of a program has been tested.

Example:

int foo (int x, int vy)
{
int z = 0;
if ((x>0) && (y>0))
z = X;

return z;

}

When we test this function, it depends on the input arguments which parts of the code will be
executed. Unit Tests should be written to cover all parts of the code.

In Visual Studio (Ultimate or Premium) these features are built-in (see Figure 27-3).

Part 3: Platforms &

279 27 Unit Testing

TEST ARCHITECTURE AMALYZE WIN...

Run

Debug s

Test Settings L

Analyze Code Coverage * B Selected Tests

. A&

R Y@ AllTests
Test Explorer v [x
EI = Search 2~

public double 5SquareRdot{double x)

Fun All | Run.. = f
4 Passed Tests (3) lf [= 0.8) Y

&) QuickNonZero S ms o rerad throw new ArgumentOutOfRangeException():

RootTestMNeg, 13 ms
double estimate = x;

SignatureTes 1 ms
gnaturefest " double previousEstimate = -x;
Covered while {(System.Math.Abs{estimate - previcusEstimate) =...
i

| Turn on colering

100 %

Code Coverage Results m

ctsoasm_MAINS0531 2012-06-07 02... E" G 1: ;:I'- x

Hierarchy Mot Cov... | Not Covered (%.. Cow..
4 ZF ictsoasm_MAINS0531 201.. ;44 ' 80,00% ‘11
4 B8 fabrikam.math.dll ¥ . S0.00% . 7
4 {} Fabrikam Math [7 | 50.00% |7

Figure 27-3: Code Coverage in Visual Studio

27.4 Exercises

1. Explain the difference between unit testing and integration testing (or interface testing in
Sommerville)

2. Suggest “test cases” for the use case “Take out Money” from an ATM, i.e., give examples of
Unit Tests and Integration Tests

Part 3: Platforms &

28 Deployment in Visual
Studio

Is it a Generic Software Product or a Tailor-made Software Solution? Different
Deployment/Installation preparations required!

We have

e Generic Software:
o Many Customers
o The Customers install the Software itself
e Tailor-made:
o Typically, only one Customer
o The Developer Company typically installs the software (at least server-side
components)
o If many Desktop Clients: A Setup is required

Different Deployment/Installation preparations required depending on what type of Apps you are
Developing.

Desktop Apps

You need to create an .exe file and a Setup Package

— Setup packages can then be distributed on CDs/DVDs or downloaded from a Web
Page

— You are use the Setup to install the software on all the clients

— Time consuming, cumbersome, depends on local components that might not be
installed, version conflicts, etc. This makes it difficult (and a lot of work and testing)
to create robust setup packages

— Mac: You can deploy to Mac App Store, Windows 8: You can deploy to Windows
Store

Web Apps
¢ No client installation needed!

* Installed on a Web Server (IS, Apache)

280

281 28 Deployment in Visual Studio

* Accessed on the Clients using only a Web Browser

* Easy, simple to deploy new versions, bugfixes, etc. (Customer don’t need to do
anything)

* But make sure you App supports all major Web Browsers (Internet Explorer,
Chrome, Firefox, Opera, Safari)

Mobile Apps

* Deployed to "App Stores" like Apple App Store, Google Play, Windows Store
(Windows 8)

Server-side (Database, Web Services, etc.)

* Typically, a setup package that installs this, or manually if it is a tailor-made solution

28.1 Setup Creation Software

Here are some examples:

InstallShield Professional/Premium

— InstallShield is a professional software for creating installers, Price €2000+

WiX Toolset (Windows Installer XML)
— Used to create Windows Installer packages ("MSI files)
— The WiXtoolset builds Windows installation packages from XML source code.
— Free and Open Source

— Used by e.g., Microsoft to create Setup packages for Office, SQL Server, Visual
Studio, etc. Apple also use it.

Inno Setup

— Free of charge Installer for Windows programs

NSIS (Nullsoft Scriptable Install System)
— Professional open source system to create Windows installers.

* etc.

28.2 Visual Studio

Part 3: Platforms &

282 28 Deployment in Visual Studio

In Visual Studio, we have the following options:

* InstallShield Limited Edition (InstallShield Professional is a professional software for
creating installers, Price €2000+)

— Tool for creating setup packages
"Included" (free), but needs to be enabled and downloaded
— Integrates with Visual Studio (Prof. ed can be used independently)
* WiX Toolset (Windows Installer XML)
— Used to create Windows Installer packages ("MSI files)
— Canbe used in Visual Studio or independently

* ClickOnce Deployment. Publishing Desktop Apps to a Web Server. Users can then install
them with a single click.

* Deployment to Windows Azure ("Windows in the Cloud"). Monthly Payment
* Web Apps (Web Deploy)

— Create a “Web Deployment Package” which can be imported using IIS
* Mobile Apps: Windows Store Apps

— Built-in Deployment inside Visual Studio to Windows Store

28.2.1 InstallShield Limited Edition

To enable InstallShield Limited Edition:

* Onthe menu bar, choose File, New, Project.

* Inthe New Project dialog box, expand the Other Project Types node, and then choose the
Setup and Deployment node.

* Inthe template list, choose Enable InstallShield Limited Edition, and then choose the OK
button.

* Inthe browser window that opens, read the instructions, and then choose the Go to the
download web site link.

In Figure 28-1 we see InstallShield Limited Edition and how it integrates into Visual Studio.

Part 3: Platforms &

283 28 Deployment in Visual Studio

o Setup1 - Microsoft Visual Studio G Y3 | Quick Launch (Ctrl+Q) Pl B x
FILE EDIT VIEW INSTALLSHIELDLE PROJECT BUILD DEBUG TEAM FORMAT TOOLS TEST ARCHITECTURE ANALYZE WINDOW HELP Hans-Petter Halvorsen ~ [

OB]2 -S| p Atach. - O - S RAB R @ optons. B .IM-EW L

Project Assistant (Setupl) + X =

Solution Explorer - f X
@ o-ea|=
Search Solution Explorer (Ctrl+") P~
& S n ‘Setup1’ (1 project)
The Project Assistant wil guide you through the process of building your installation. You can use the Project Assistant to create a basic instalation, or to build the foundation for an advanced installaion. To 4 [Setupt
access al the features and al the power of InstalShield, use the Instalation Designer. -
Getting Started
[Project Assistant
8% Microsoft App-V Assistant
4 @ Organize Your Setup
@ General Information
#ffd Setup Design
@ Features
51/ Setup Types
[Upgrade Paths
Y Update Notifications
© Specify Application Data
€) Configure the Target System
@) Customize the Setup Appearance
O Define Setup Requirements and Actions.
(D Prepare for Release

°® (T2 Team Explorer
Files Shortcuts ion Registry S
roperties

Click Home toreturn Click Nexct to get started
to this page. using the Project Assistant.

Interview

Installation Architecture.
?2' A h

g
'l
H
B

uojjeyejsuy

vvvww

N &

Figure 28-1: InstallShield Limited Edition

28.2.2 WiX Toolset

Download WiX Toolset from: http://wixtoolset.org

See how WiX is integrated in Visual Studio in Figure 28-2.

Part 3: Platforms &

http://wixtoolset.org/

284 28 Deployment in Visual Studio

p WinFormApp - Microsoft Visual Studio 63 Y5 | QuickLaunch (Ctrl+Q) P - O x
FILE EDIT VIEW PROJECT BULD DEBUG TEAM TOOLS TEST ARCHITECTURE ANALYZE WINDOW HELP Hans-Petter Halvorsen ~
‘0-o|B-uWE|2- B Start -) - I | | m .
Productwaxs & Ml Solution Explorer > ix
<?xml version="1.8" encoding="UTF-8"?> + . .
- an -
[=1<Mix xmlns="http://schemas.microsoft. com/wix/3086 /wi"> = Gl e-2aai s
Search Solution Explorer (Ctrl+") P

= <Product Id="*" Name="MySetup” Language="1@33" Version="1.8.8.8" Manufacturer="Telemark University College" UpgradeCode="2ee9a35c-e8ba-4197-

57 Solution 'WinFormApp' (2 projects)
<Package InstallerVersion="288" Compressed="yes" InstallScope="perMachine” /> 4 M MySetup

4 |7 References

WinFormApp
Product.uss

<MajorUpgrade DowngradeErroriessage:
<vediaTemplate />

"A newer version of [Productiame] is already installed.” />

a WinFormApp
E <Feature Id="ProductFeature” Title="Mysetup” Level="1"> b K& Properties
/;Eol:ponentﬁr‘oupkef Id="ProductComponents” /> b B References
</Feature> N
</Product> 43 App.config
b Forml.cs
El <Fragment> b = Program.cs
E <Directory Id="TARGETDIR" Name="SourceDir">
E <Directory Td="ProgramFilesFolder”>
<Directory Id="INSTALLFOLDER" Nam
</Directory>
</Directory>
</Fragment> I

E <Fragment>

Solution Explorer [

= <ComponentGroup Id="PreductComponents” Directory="INSTALLFOLDER">
Properties
E <Component Id="ProductComponent”s MySetup Project Properties .
<File Source="$({var.WinFormipp.TargetPath)” /> D
Project File MysSetup.winproj
</Component> Project Folder CA\Temp\Visual Studio Projects
</ComponentGroup>
</Fragment>
iy
Project File
+ | The name of the file containing build, configuration, and
% o4 D ather information about the project.

Figure 28-2: WiX in Visual Studio

Part 3: Platforms &

Part 5 : Additional
Resources

In this part, additional resources, references and appendices are available.

285

29 Tutorials

If you want to go more in details on some of the topics in this document, please see the following
Tutorials:

Introduction to Visual Studio and C#
Using SQL Server in C#

Data Acquisition in C#

ASP.NET and Web Programming
Introduction to Web Services
Introduction to Database Systems
Structured Query language (SQL)

O N U A WDNR

etc.
They are available from:

https://halvorsen.blog

You will find additional resources on this web page:

https://halvorsen.blog/documents/programming/software engineering/

Here you will also find lots of hands-on exercises and training resources, e.g.:

o Create a Desktop App (WinForm)

e Createa Web App (ASP.NET Web Forms)

e Create a Mobile App (Windows Store App)

e Create Database Design & Implementation (ERwin & SQL Server)
e Create ASP.NET WebForm Database App

e Create Web Services

e Create 3-tier Applications

e Create a Virtual Test Environment

e Create Unit Tests

e Deploymentin Visual Studio

Additional information is located here:

https://halvorsen.blog

286

https://halvorsen.blog/
https://halvorsen.blog/documents/programming/software_engineering/
https://halvorsen.blog/

30 Glossary

Below we will give a short overview of some important topics in software development.

Term

Description

Agile
Development

Agile software development is a group of software development methods
based on iterative and incremental development.

Agile Manifesto

The philosophy behind Agile methods is reflected in the Agile Manifesto.

ALM

Application Lifecycle Management. An ALM system takes care of all
aspects in software development from planning, requirements, coding,
testing, deployment and maintenance. Azure DevOps is an example of an
ALM system.

API

Application Programming Interface. API specifies how some software
components should interact with each other.

In practice in most of the cases an APl is a library of different classes,
methods/functions, etc. that a Developer can use.

Burn Down
Chart

A burn down chart is a graphical representation of work left to do versus
time. The outstanding work (or backlog) is often on the vertical axis, with
time along the horizontal. That is, it is a run chart of outstanding work. It
is useful for predicting when all of the work will be completed.

It is often used in agile software development methodologies such as
Scrum. However, burn down charts can be applied to any project
containing measurable progress over time.

Code
Freeze/Feature
Freeze

No changes in the code can be made, except bugs.

Code Review

Code inspections to check if code is properly written, and useful to avoid
bugs in your code.

Daily Scrum In Scrum Development they have daily 15 minutes meetings within the
Software Team. The Meeting is usually a Stand-up meeting.
DDT Development-Driven Testing

287

288

30 Glossary

Dog-fooding Computer software company uses its own product to demonstrate the
quality and capabilities of the product.

GUI Graphical User Interface. The part of the software the user sees and
interact with.

HA High Availability. Some software needs to run 24-7.

HMI Human Machine Interface. Another term for Graphical User Interface.

IDE Integrated Development Environment. A software application that helps

developers to create, edit, compile and run their code.

Internal Server

Typical errors from web pages. The Web server (running the Web Site)

Error encountered an unexpected condition that prevented it from fulfilling the
request by the client.
Pair 2 developers working together.

Programming

QA

Quality Assurance. QA refers to the engineering activities implemented in
a quality system so that requirements for a product or service will be
fulfilled.

Refactoring

Code refactoring is used in software development to improve existing
code without changing its functionality. The goal is to make the code
more robust and easier to maintain.

SCC

Source Code Control or Version Control. A version control system keeps
track of all work and all changes in a set of files. Allows several
developers (potentially widely separated in space and time) to collaborate

and share code.

SDD

Software Design Document. A document describing the design of a

software application.

SDK

Software Development Kit. A SDK is typically a set of software
development tools that allows for the creation of applications for a
certain software package, software framework, hardware platform,
computer system, operating system, or similar development platform.

SDLC

Software Development Life Cycle. The process of creating software.

Software
Development
Process

Waterfall, Agile, etc.

Part 5: Additional Resources

289 30 Glossary

Software The discipline for creating software applications. A systematic approach to
Engineering the design, development, testing, and maintenance of software.
SRS Software Requirements Specifications. A document stating what at

application must accomplish.

STD Software Test Documentation. Contents: Introduction, Test Plan, Test
Design, Test Cases, Test procedures, Test Log, ..., Summary.

STP Software Test Plan. Documentation stating what parts of an application
will be tested, and the schedule of when the testing is to be performed.

TDD Test-driven development (TDD) is a software development process that
relies on the repetition of a very short development cycle: first the
developer writes an (initially failing) test case that defines a desired
improvement or new function, then produces the minimum amount of
code to pass that test, and finally refactors the new code to acceptable
standards.

Azure DevOps Azure DevOps is a Source Code Control (SCC), Bug Tracking, Project
Management, and Team Collaboration platform from Microsoft

UML Unified Modeling Language. A Language used in Software modeling.

XP eXtreme Programming. XP is an Agile Software Development method. It’s
based on Unit Testing, Code Reviews and Pair Programming.

Part 5: Additional Resources

References

[1]
(2]

3]

[4]

(5]

6]

[7]
(8]

[9]

[10]
[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

I. Sommerville, Software Engineering, 10 ed.: Pearson, 2016.

Wikipedia. (2017). Software Requirements Specification. Available:
http://en.wikipedia.org/wiki/Software Requirements Specification

Wikipedia. (2017). Software Development Process. Available:
http://en.wikipedia.org/wiki/Software process

Wikipedia. (2017). Waterfall Model. Available: http://en.wikipedia.org/wiki/Waterfall model

Wikipedia. (2017). V-Model (Software Development). Available: http://en.wikipedia.org/wiki/V-
Model (software development)

Wikipedia. (2017). Agile Software Development. Available:
http://en.wikipedia.org/wiki/Agile software development

Agile. (2017). Agile Manifesto. Available: http://agilemanifesto.org

Wikipedia. (2017). Pair Programming. Available:
http://en.wikipedia.org/wiki/Pair programming

Wikipedia. (2017). Scrum Development. Available:
http://en.wikipedia.org/wiki/Scrum (development)

Wikipedia, "Unified Process," 2017.
K. Schwaber and J. Sutherland. 2011, The Scrum Guide. Available: scrum.org
E. J. Braude and M. E.Bernstein, Software Engineering: Modern Approaches, 2 ed.: Wiley, 2011.

Microsoft. (2017). Windows 8 UX Guidelines. Available: http://msdn.microsoft.com/en-
US/library/windows/apps/hh465424

Apple. (2073). Mac OS X UX Guidelines. Available: https://developer.apple.com/library/mac/ -
documentation/userexperience/conceptual/applehiguidelines/UEGuidelines/UEGuidelines.

html

Wikipedia. (2017). GUI Mockups. Available: http://en.wikipedia.org/wiki/Mockup

F. Tsui, O. Karam, and B. Bernal, Essentials of Software Engineering, 3 ed.: Jones & Barlett Learning,
2014.

H.-P. Halvorsen. (2017). ASP.NET and Web Programming. Available: https://www.halvorsen.blog

H.-P. Halvorsen. (2017). Introduction to Visual Studio and C#. Available:
https://www.halvorsen.blog

H.-P. Halvorsen. (2017). Structured Query Language. Available: https://www.halvorsen.blog

H.-P. Halvorsen. (2017). So You Think You Can MATLAB? Available: https://www.halvorsen.blog

290

http://en.wikipedia.org/wiki/Software_Requirements_Specification
http://en.wikipedia.org/wiki/Software_process
http://en.wikipedia.org/wiki/Waterfall_model
http://en.wikipedia.org/wiki/V-Model_(software_development
http://en.wikipedia.org/wiki/V-Model_(software_development
http://en.wikipedia.org/wiki/Agile_software_development
http://agilemanifesto.org/
http://en.wikipedia.org/wiki/Pair_programming
http://en.wikipedia.org/wiki/Scrum_(development
http://msdn.microsoft.com/en-US/library/windows/apps/hh465424
http://msdn.microsoft.com/en-US/library/windows/apps/hh465424
https://developer.apple.com/library/mac/#documentation/userexperience/conceptual/applehiguidelines/UEGuidelines/UEGuidelines.html
https://developer.apple.com/library/mac/#documentation/userexperience/conceptual/applehiguidelines/UEGuidelines/UEGuidelines.html
https://developer.apple.com/library/mac/#documentation/userexperience/conceptual/applehiguidelines/UEGuidelines/UEGuidelines.html
http://en.wikipedia.org/wiki/Mockup
https://www.halvorsen.blog/
https://www.halvorsen.blog/
https://www.halvorsen.blog/

291 References

[21] H.-P. Halvorsen. (2017). LabVIEW Resources. Available: https://www.halvorsen.blog

[22] L. Malka. (2013). API. Available: http://www.lior.ca/publications/api design.pdf

[23] H.-P. Halvorsen. (2017). Introduction to Web Services. Available: https://www.halvorsen.blog

[24] E. Blankenship, M. Woodward, G. Holliday, and B. Keller, Professional Team Foundation Server
2012: Wiley, 2013.

[25] H.-P. Halvorsen. (2017). Introduction to Database Systems. Available: https://www.halvorsen.blog

Part 5: Additional Resources

https://www.halvorsen.blog/
http://www.lior.ca/publications/api_design.pdf
https://www.halvorsen.blog/
https://www.halvorsen.blog/

Hans-Petter Halvorsen

E-mail: hans.p.halvorsen@usn.no

Web: https://halvorsen.blog/

Of410

“ |

[=]

https://halvorsen.blog/

https://halvorsen.blog/
https://halvorsen.blog/

Software Development

A Practical Approach!

Hans-Petter Halvorsen

Copyright © 2018
ISBN: 978-82-691106-0-9

Publisher Identifier: 978-82-691106

https://halvorsen.blog

https://halvorsen.blog/

Software Development

	Preface
	Part 1 : Introduction
	1 Introduction
	1.1 Background
	1.2 Topics
	1.3 Tools

	2 Software History
	2.1 Introduction
	2.2 Software Trends

	3 Software Development
	3.1 Challenges
	3.2 Software Systems
	3.3 Documentation
	3.4 Iterations and Releases

	Part 2 : Software Engineering
	4 Development Teams
	4.1 Teams
	4.2 Roles
	4.2.1 Stakeholders
	4.2.2 Project Manager
	4.2.3 System Architect
	4.2.4 UX Designer
	4.2.5 Programmer
	4.2.6 Software Tester

	5 Software Development Phases
	5.1 Requirements
	5.2 Design
	5.2.1 Technical Design
	5.2.2 UX Design

	5.3 Implementation
	5.4 Testing
	5.5 Deployment

	6 Software Development Process
	6.1 Plan-driven models
	6.1.1 Waterfall model
	6.1.2 V-model

	6.2 Agile Software Development
	6.2.1 Waterfall vs. Agile
	6.2.2 eXtreme Programming (XP)
	6.2.3 Scrum
	6.2.4 Kanban

	6.3 Hybrid Process Models
	6.3.1 Unified Process (UP)/ Rational Unified Process (RUP)

	6.4 Summary
	6.5 Exercises

	7 Scrum
	7.1 The Scrum Process
	7.2 Scrum Events
	7.2.1 Daily Scrum Meeting

	7.3 Scrum Artifacts
	7.4 The Scrum Team
	7.5 Scrum Meetings
	7.6 Scrum Terms
	7.7 Tips and Tricks

	8 Project Management
	8.1 Project Planning
	8.2 Kick-off/Brainstorming
	8.3 Software Development Plan (SDP)
	8.3.1 Gantt Chart

	8.4 Meetings
	8.4.1 Meeting Agenda
	8.4.2 Minutes of Meeting

	8.5 Agile Project Planning and Tracking
	8.6 Summary

	9 Requirements Engineering
	9.1 User Requirements
	9.2 System Requirements
	9.3 Functional Requirements
	9.4 Non-Functional Requirements
	9.5 SRS
	9.6 Project Estimation
	9.7 Exercises

	10 User eXperience(UX)
	10.1 UX Guidelines
	10.2 GUI Mockup
	10.3 Creativity

	11 UML
	11.1 Introduction
	11.2 UML Software
	11.2.1 Visual Studio Enterprise

	11.3 Use Case
	11.4 Sequence Diagram
	11.5 Class Diagram
	11.6 Creating UML Diagrams
	11.7 UML in Agile/Scrum?
	11.8 Summary
	11.9 Exercises

	12 Software Implementation
	12.1 Programming Style & Coding Guidelines
	12.1.1 Naming Convention

	12.2 Comments
	12.3 Debugging
	12.4 Code Review
	12.5 Refactoring

	13 Testing
	13.1 Introduction
	13.1.1 Test Levels
	13.1.2 Bug Tracking
	13.1.3 Software versioning

	13.2 Test Categories
	13.2.1 Black-box Testing
	13.2.2 White-box Testing

	13.3 Test Levels
	13.3.1 Unit Testing
	13.3.2 Regression Testing
	13.3.3 Integration Testing
	13.3.4 System Testing/Validation Testing
	13.3.5 Acceptance Testing

	13.4 Test Documentation
	13.4.1 Test Planning

	13.5 Bug Tracking Systems
	13.6 Test Environment
	13.6.1 Virtualization

	13.7 Terms used in Testing
	13.7.1 Bugs
	13.7.2 Debugging
	13.7.3 Code Coverage
	13.7.4 Eat your own Dog food
	13.7.5 Code/Feature Freeze
	13.7.6 Test-Driven Development (TDD)
	13.7.7 Development-Driven Testing (DDT)

	13.8 The 7 Principles of Testing
	13.9 Testing Summary
	13.10 Exercises

	14 Deployment and Installation
	14.1 Introduction
	14.2 Releases
	14.3 Deployment
	14.4 Test and Production Environment
	14.4.1 Development Environment
	14.4.2 Production Environment
	14.4.3 Test Environment

	15 Project Documentation
	15.1 Process Documentation
	15.2 Product Documentation
	15.2.1 System Documentation
	15.2.2 User Documentation

	15.3 Setup & Distribution

	16 Software Maintenance
	16.1 Introduction
	16.2 Categories

	Part 3 : Platforms & Architecture
	17 Software Platforms
	17.1 Introduction
	17.2 Platform Vendors
	17.3 Desktop
	17.3.1 Windows
	17.3.2 macOS
	17.3.3 Linux

	17.4 Web
	17.4.1 Web Servers
	17.4.2 Web Frameworks
	17.4.3 ASP.NET Core
	17.4.4 Web Scripting Languages

	17.5 Mobile Devices
	17.5.1 iOS
	17.5.2 Android
	17.5.3 Windows 10

	17.6 Cloud Computing
	17.7 Open Source

	18 Software Frameworks & Languages
	18.1 Object-Oriented Programming (OOP)
	18.2 Popular Programming Languages 
	18.2.1 C
	18.2.2 C++
	18.2.3 C#
	18.2.4 Java
	18.2.5 Objective-C
	18.2.6 Visual Basic
	18.2.7 Perl
	18.2.8 Python
	18.2.9 PHP
	18.2.10 JavaScript
	18.2.11 SQL
	18.2.12 MATLAB
	18.2.13 LabVIEW

	18.3 Naming Convention
	18.4 Defensive Programming
	18.4.1 Error Handling

	18.5 Software Frameworks
	18.5.1 .NET Framework
	18.5.2 WPF

	19 Software Architecture
	19.1 API
	19.2 Client-Server
	19.3 Web Services
	19.3.1 SOAP Web Services
	19.3.2 REST Web Services
	19.3.3 Creating Web Services with Visual Studio

	19.4 3-tier Architecture

	Part 4 : Management and Development Tools
	20 Project Management System
	20.1 Features and Functionality
	20.1.1 Project Dashboard
	20.1.2 Taskboard
	20.1.3 Risk Analysis
	20.1.4 Bugs and Issue Tracking
	20.1.5 Meetings
	20.1.6 Project Status
	20.1.7 Notifications
	20.1.8 Notes

	21 Integrated Development Environment (IDE)
	21.1 Visual Studio
	21.2 Visual Studio for Mac
	21.3 Visual Studio Code
	21.4 Xcode
	21.5 Eclipse
	21.6 Android Studio

	22 UML Software
	22.1 Visio
	22.2 StarUML

	23 Source Code Control (SCC)
	23.1 Introduction
	23.2 Azure DevOps
	23.3 SVN
	23.4 CVS
	23.5 Git
	23.6 Others
	23.7 Cloud-based SCC Hosting Services
	23.7.1 Azure DevOps Services
	23.7.2 GitHub
	23.7.3 Bitbucket

	24 Bug Tracking Systems
	25 Azure DevOps
	25.1 Source Code Control (SCC)
	25.2 Areas and Iterations
	25.3 Work Items
	25.3.1 Queries

	25.4 Taskboard
	25.5 Azure DevOps Services
	25.6 Client Tools
	25.6.1 Team Explorer
	25.6.2 MS Excel Add-in
	25.6.3 MS Project Add-in
	25.6.4 Windows Explorer Integration
	25.6.5 Azure DevOps MSSCCI Provider
	25.6.6 Team Explorer Everywhere

	25.7 Agile (Scrum) Development in Azure DevOps
	25.7.1 Product Backlog Items in Azure DevOps
	25.7.2 Sprint Backlog Items in Azure DevOps
	25.7.3 Taskboard

	25.8 Software Testing in Azure DevOps
	25.8.1 Test Planning in Azure DevOps

	26 Databases
	26.1 SQL Server
	26.2 ER Diagram
	26.2.1 MS Visio
	26.2.2 ERwin

	26.3 Structured Query Language
	26.3.1 Best Practice

	27 Unit Testing
	27.1 Unit Tests Frameworks
	27.2 Unit Testing in Visual Studio
	27.3 Code Coverage
	27.4 Exercises

	28 Deployment in Visual Studio
	28.1 Setup Creation Software
	28.2 Visual Studio
	28.2.1 InstallShield Limited Edition
	28.2.2 WiX Toolset

	Part 5 : Additional Resources
	29 Tutorials
	30 Glossary
	References
	Blank Page
	Blank Page
	Blank Page

